#include "WorkpiecePresenter.h" #include "VrError.h" #include "VrLog.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "Version.h" #include "VrTimeUtils.h" #include "VrDateUtils.h" #include "SG_baseDataType.h" #include "VrConvert.h" #include "TCPServerProtocol.h" #include "DetectPresenter.h" #include "PathManager.h" WorkpiecePresenter::WorkpiecePresenter(QObject *parent) : QObject(parent) , m_vrConfig(nullptr) , m_pStatus(nullptr) , m_pDetectPresenter(nullptr) , m_pTCPServer(nullptr) , m_bCameraConnected(false) , m_bTCPConnected(false) , m_currentWorkStatus(WorkStatus::Error) { m_detectionDataCache.clear(); } WorkpiecePresenter::~WorkpiecePresenter() { // 停止配置管理器 if (m_pConfigManager) { m_pConfigManager->Shutdown(); m_pConfigManager.reset(); } // 停止算法检测线程 m_bAlgoDetectThreadRunning = false; m_algoDetectCondition.notify_all(); // 等待算法检测线程结束 if (m_algoDetectThread.joinable()) { m_algoDetectThread.join(); } // 释放缓存的检测数据 _ClearDetectionDataCache(); // 释放TCP服务器 if (m_pTCPServer) { m_pTCPServer->Deinitialize(); delete m_pTCPServer; m_pTCPServer = nullptr; } // 释放相机设备资源 for(auto it = m_vrEyeDeviceList.begin(); it != m_vrEyeDeviceList.end(); it++) { if (it->second != nullptr) { it->second->CloseDevice(); delete it->second; it->second = nullptr; } } m_vrEyeDeviceList.clear(); // 释放检测处理器 if(m_pDetectPresenter) { delete m_pDetectPresenter; m_pDetectPresenter = nullptr; } // 释放配置对象 if (m_vrConfig) { delete m_vrConfig; m_vrConfig = nullptr; } } int WorkpiecePresenter::Init() { LOG_DEBUG("Start APP Version: %s\n", WORKPIECE_FULL_VERSION_STRING); // 初始化 PathManager 单例 PathManager::Initialize("WorkpieceApp"); // 初始化连接状态 m_bCameraConnected = false; m_currentWorkStatus = WorkStatus::InitIng; m_pStatus->OnWorkStatusChanged(m_currentWorkStatus); m_pDetectPresenter = new DetectPresenter(); // 获取配置文件路径 QString configPath = PathManager::GetInstance().GetConfigFilePath(); int nRet = SUCCESS; // 初始化配置管理器(ConfigManager 内部会创建 IVrConfig 实例) m_pConfigManager = std::make_unique(); if (!m_pConfigManager->Initialize(configPath.toStdString())) { LOG_ERROR("Failed to initialize ConfigManager\n"); m_pStatus->OnStatusUpdate("配置管理器初始化失败"); return ERR_CODE(DEV_OPEN_ERR); } LOG_INFO("ConfigManager initialized successfully\n"); // 从 ConfigManager 获取配置结果 ConfigResult configResult = m_pConfigManager->GetConfigResult(); m_projectType = configResult.projectType; // 获取 IVrConfig 实例用于配置改变通知 m_vrConfig = m_pConfigManager->GetVrConfigInstance(); // 设置配置改变通知回调 if (m_vrConfig) { m_vrConfig->SetConfigChangeNotify(this); } // 初始化算法参数 nRet = InitAlgorithmParams(); if (nRet != 0) { m_pStatus->OnStatusUpdate("算法参数初始化失败"); LOG_ERROR("Algorithm parameters initialization failed with error: %d\n", nRet); } else { m_pStatus->OnStatusUpdate("算法参数初始化成功"); LOG_INFO("Algorithm parameters initialization successful\n"); } InitCamera(configResult.cameraList); LOG_INFO("Camera initialization completed. Connected cameras: %zu, default camera index: %d\n", m_vrEyeDeviceList.size(), m_currentCameraIndex); // 初始化TCP服务器 nRet = InitTCPServer(); if (nRet != 0) { m_pStatus->OnStatusUpdate("TCP服务器初始化失败"); m_bTCPConnected = false; } else { m_pStatus->OnStatusUpdate("TCP服务器初始化成功"); } m_bAlgoDetectThreadRunning = true; m_algoDetectThread = std::thread(&WorkpiecePresenter::_AlgoDetectThread, this); m_algoDetectThread.detach(); m_pStatus->OnStatusUpdate("设备初始化完成"); CheckAndUpdateWorkStatus(); QString str = QString("%1 配置初始化成功").arg(ProjectTypeToString(configResult.projectType).c_str()); m_pStatus->OnStatusUpdate(str.toStdString()); return SUCCESS; } // 相机协议相关方法 int WorkpiecePresenter::InitCamera(std::vector& cameraList) { // 通知UI相机个数 int cameraCount = cameraList.size(); // 初始化相机列表,预分配空间 m_vrEyeDeviceList.resize(cameraCount, std::make_pair("", nullptr)); for(int i = 0; i < cameraCount; i++) { m_vrEyeDeviceList[i] = std::make_pair(cameraList[i].name, nullptr); } m_pStatus->OnCameraCountChanged(cameraCount); LOG_DEBUG("config camera num : %d\n", cameraCount); if(cameraCount > 0){ if (cameraCount >= 1) { // 尝试打开相机 int nRet = _OpenDevice(1, cameraList[0].name.c_str(), cameraList[0].ip.c_str(), m_projectType); m_pStatus->OnCamera1StatusChanged(nRet == SUCCESS); m_bCameraConnected = (nRet == SUCCESS); } if (cameraCount >= 2) { // 尝试打开相机 int nRet = _OpenDevice(2, cameraList[1].name.c_str(), cameraList[1].ip.c_str(), m_projectType); m_pStatus->OnCamera2StatusChanged(nRet == SUCCESS); m_bCameraConnected = (nRet == SUCCESS); } } else { m_vrEyeDeviceList.resize(1, std::make_pair("", nullptr)); _OpenDevice(1, "相机", nullptr, m_projectType); } // 设置默认相机索引为第一个连接的相机 m_currentCameraIndex = 1; // 默认从1开始 for (int i = 0; i < static_cast(m_vrEyeDeviceList.size()); i++) { if (m_vrEyeDeviceList[i].second != nullptr) { m_currentCameraIndex = i + 1; // 找到第一个连接的相机 break; } } return SUCCESS; } // 初始化算法参数 int WorkpiecePresenter::InitAlgorithmParams() { LOG_DEBUG("initializing algorithm parameters\n"); QString exePath = QCoreApplication::applicationFilePath(); // 清空现有的手眼标定矩阵列表 m_clibMatrixList.clear(); // 获取手眼标定文件路径并确保文件存在 QString clibPath = PathManager::GetInstance().GetCalibrationFilePath(); LOG_INFO("Loading hand-eye matrices from: %s\n", clibPath.toStdString().c_str()); // 读取存在的矩阵数量 int nExistMatrixNum = CVrConvert::GetClibMatrixCount(clibPath.toStdString().c_str()); LOG_INFO("Found %d hand-eye calibration matrices\n", nExistMatrixNum); // 循环加载每个矩阵 for(int matrixIndex = 0; matrixIndex < nExistMatrixNum; matrixIndex++) { // 构造矩阵标识符 char matrixIdent[64]; #ifdef _WIN32 sprintf_s(matrixIdent, "CalibMatrixInfo_%d", matrixIndex); #else sprintf(matrixIdent, "CalibMatrixInfo_%d", matrixIndex); #endif // 创建新的标定矩阵结构 CalibMatrix calibMatrix; // 初始化为单位矩阵 double initClibMatrix[16] = { 1.0, 0.0, 0.0, 0.0, // 第一行 0.0, 1.0, 0.0, 0.0, // 第二行 0.0, 0.0, 1.0, 0.0, // 第三行 0.0, 0.0, 0.0, 1.0 // 第四行 }; // 加载矩阵数据 bool loadSuccess = CVrConvert::LoadClibMatrix(clibPath.toStdString().c_str(), matrixIdent, "dCalibMatrix", calibMatrix.clibMatrix); if(loadSuccess) { m_clibMatrixList.push_back(calibMatrix); LOG_INFO("Successfully loaded matrix %d\n", matrixIndex); // 输出矩阵内容 QString clibMatrixStr; LOG_INFO("Matrix %d content:\n", matrixIndex); for (int i = 0; i < 4; ++i) { clibMatrixStr.clear(); for (int j = 0; j < 4; ++j) { clibMatrixStr += QString::asprintf("%8.4f ", calibMatrix.clibMatrix[i * 4 + j]); } LOG_INFO(" %s\n", clibMatrixStr.toStdString().c_str()); } } else { LOG_WARNING("Failed to load matrix %d, using identity matrix\n", matrixIndex); // 如果加载失败,使用单位矩阵 memcpy(calibMatrix.clibMatrix, initClibMatrix, sizeof(initClibMatrix)); m_clibMatrixList.push_back(calibMatrix); } } LOG_INFO("Total loaded %zu hand-eye calibration matrices\n", m_clibMatrixList.size()); // 从 ConfigManager 获取已加载的配置(避免重复加载) ConfigResult configResult = m_pConfigManager->GetConfigResult(); // 如果 ConfigManager 配置无效或 m_vrConfig 为空,尝试直接加载 if (configResult.cameraList.empty() && m_vrConfig) { LOG_WARNING("ConfigResult from ConfigManager is empty, trying direct load\n"); QString configPath = PathManager::GetInstance().GetConfigFilePath(); LOG_INFO("Loading config: %s\n", configPath.toStdString().c_str()); int ret = m_vrConfig->LoadConfig(configPath.toStdString(), configResult); if (ret != LOAD_CONFIG_SUCCESS) { LOG_ERROR("Failed to load config file directly, error code: %d\n", ret); } } const VrAlgorithmParams& xmlParams = configResult.algorithmParams; // 保存调试参数 m_debugParam = configResult.debugParam; LOG_INFO("Loaded XML params - Workpiece: lineLen=%.1f\n", xmlParams.workpieceParam.lineLen); LOG_INFO("Loaded XML params - Filter: continuityTh=%.1f, outlierTh=%.1f\n", xmlParams.filterParam.continuityTh, xmlParams.filterParam.outlierTh); // 直接使用配置结构 m_algorithmParams = xmlParams; LOG_INFO("projectType: %s\n", ProjectTypeToString(m_projectType).c_str()); LOG_INFO("Algorithm parameters initialized successfully:\n"); LOG_INFO(" Workpiece: lineLen=%.1f\n", m_algorithmParams.workpieceParam.lineLen); // 循环打印所有相机的调平参数(添加安全检查) LOG_INFO("Loading plane calibration parameters for all cameras:\n"); if (!m_algorithmParams.planeCalibParam.cameraCalibParams.empty()) { for (const auto& cameraParam : m_algorithmParams.planeCalibParam.cameraCalibParams) { try { LOG_INFO("Camera %d (%s) calibration parameters:\n", cameraParam.cameraIndex, cameraParam.cameraName.c_str()); LOG_INFO(" Is calibrated: %s\n", cameraParam.isCalibrated ? "YES" : "NO"); LOG_INFO(" Plane height: %.3f\n", cameraParam.planeHeight); LOG_INFO(" Plane calibration matrix:\n"); LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.planeCalib[0], cameraParam.planeCalib[1], cameraParam.planeCalib[2]); LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.planeCalib[3], cameraParam.planeCalib[4], cameraParam.planeCalib[5]); LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.planeCalib[6], cameraParam.planeCalib[7], cameraParam.planeCalib[8]); LOG_INFO(" Inverse rotation matrix:\n"); LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.invRMatrix[0], cameraParam.invRMatrix[1], cameraParam.invRMatrix[2]); LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.invRMatrix[3], cameraParam.invRMatrix[4], cameraParam.invRMatrix[5]); LOG_INFO(" [%.3f, %.3f, %.3f]\n", cameraParam.invRMatrix[6], cameraParam.invRMatrix[7], cameraParam.invRMatrix[8]); LOG_INFO(" --------------------------------\n"); } catch (const std::exception& e) { LOG_ERROR("Exception while printing camera calibration parameters: %s\n", e.what()); } catch (...) { LOG_ERROR("Unknown exception while printing camera calibration parameters\n"); } } } else { LOG_WARNING("No plane calibration parameters found in configuration\n"); } return SUCCESS; } // 手眼标定矩阵管理方法实现 CalibMatrix WorkpiecePresenter::GetClibMatrix(int index) const { CalibMatrix clibMatrix; double initClibMatrix[16] = { 1.0, 0.0, 0.0, 0.0, // 第一行 0.0, 1.0, 0.0, 0.0, // 第二行 0.0, 0.0, 1.0, 0.0, // 第三行 0.0, 0.0, 0.0, 1.0 // 第四行 }; memcpy(clibMatrix.clibMatrix, initClibMatrix, sizeof(initClibMatrix)); if (index >= 0 && index < static_cast(m_clibMatrixList.size())) { clibMatrix = m_clibMatrixList[index]; memcpy(clibMatrix.clibMatrix, m_clibMatrixList[index].clibMatrix, sizeof(initClibMatrix)); } else { LOG_WARNING("Invalid hand-eye calibration matrix\n"); } return clibMatrix; } void WorkpiecePresenter::SetStatusCallback(IYWorkpieceStatus* status) { m_pStatus = status; } // 模拟检测函数,用于演示 int WorkpiecePresenter::StartDetection(int cameraIdx, bool isAuto) { LOG_INFO("--------------------------------\n"); LOG_INFO("Start detection with camera index: %d\n", cameraIdx); // 检查设备状态是否准备就绪 if (isAuto && m_currentWorkStatus != WorkStatus::Ready) { LOG_INFO("Device not ready, cannot start detection\n"); if (m_pStatus) { m_pStatus->OnStatusUpdate("设备未准备就绪,无法开始检测"); } return ERR_CODE(DEV_BUSY); } // 保存当前使用的相机ID(从1开始编号) if(-1 != cameraIdx){ m_currentCameraIndex = cameraIdx; } int cameraIndex = m_currentCameraIndex; m_currentWorkStatus = WorkStatus::Working; // 通知UI工作状态变更为"正在工作" if (m_pStatus) { m_pStatus->OnWorkStatusChanged(WorkStatus::Working); } // 设置机械臂工作状态为忙碌 if(m_vrEyeDeviceList.empty()){ LOG_ERROR("No camera device found\n"); if (m_pStatus) { m_pStatus->OnStatusUpdate("未找到相机设备"); } return ERR_CODE(DEV_NOT_FIND); } // 清空检测数据缓存(释放之前的内存) _ClearDetectionDataCache(); int nRet = SUCCESS; // 根据参数决定启动哪些相机 // 启动指定相机(cameraIndex为相机ID,从1开始编号) int arrayIndex = cameraIndex - 1; // 转换为数组索引(从0开始) // 检查相机是否连接 if (arrayIndex < 0 || arrayIndex >= static_cast(m_vrEyeDeviceList.size()) || m_vrEyeDeviceList[arrayIndex].second == nullptr) { LOG_ERROR("Camera %d is not connected\n", cameraIndex); QString cameraName = (arrayIndex >= 0 && arrayIndex < static_cast(m_vrEyeDeviceList.size())) ? QString::fromStdString(m_vrEyeDeviceList[arrayIndex].first) : QString("相机%1").arg(cameraIndex); m_pStatus->OnStatusUpdate(QString("%1 未连接").arg(cameraName).toStdString()); return ERR_CODE(DEV_NOT_FIND); } if (arrayIndex >= 0 && arrayIndex < static_cast(m_vrEyeDeviceList.size())) { IVrEyeDevice* pDevice = m_vrEyeDeviceList[arrayIndex].second; EVzResultDataType eDataType = keResultDataType_Position; if(m_projectType == ProjectType::DirectBag){ eDataType = keResultDataType_PointXYZRGBA; } pDevice->SetStatusCallback(&WorkpiecePresenter::_StaticCameraNotify, this); // 开始 nRet = pDevice->StartDetect(&WorkpiecePresenter::_StaticDetectionCallback, eDataType, this); LOG_INFO("Camera ID %d start detection nRet: %d\n", cameraIndex, nRet); if (nRet == SUCCESS) { QString cameraName = QString::fromStdString(m_vrEyeDeviceList[arrayIndex].first); m_pStatus->OnStatusUpdate(QString("启动%1检测成功").arg(cameraName).toStdString()); } else { LOG_ERROR("Camera ID %d start detection failed with error: %d\n", cameraIndex, nRet); QString cameraName = QString::fromStdString(m_vrEyeDeviceList[arrayIndex].first); m_pStatus->OnStatusUpdate(QString("启动%1检测失败[%d]").arg(cameraName).arg(nRet).toStdString()); } } else { LOG_ERROR("Invalid camera ID: %d, valid range is 1-%zu\n", cameraIndex, m_vrEyeDeviceList.size()); m_pStatus->OnStatusUpdate(QString("无效的相机ID: %1,有效范围: 1-%2").arg(cameraIndex).arg(m_vrEyeDeviceList.size()).toStdString()); nRet = ERR_CODE(DEV_NOT_FIND); } return nRet; } int WorkpiecePresenter::StopDetection() { LOG_INFO("Stop detection\n"); // 停止所有相机的检测 for (size_t i = 0; i < m_vrEyeDeviceList.size(); ++i) { IVrEyeDevice* pDevice = m_vrEyeDeviceList[i].second; if (pDevice) { int ret = pDevice->StopDetect(); if (ret == 0) { LOG_INFO("Camera %zu stop detection successfully\n", i + 1); } else { LOG_WARNING("Camera %zu stop detection failed, error code: %d\n", i + 1, ret); } } } // 通知UI工作状态变更为"就绪"(如果设备连接正常) if (m_pStatus) { // 检查设备连接状态,决定停止后的状态 if (m_bCameraConnected) { m_currentWorkStatus = WorkStatus::Ready; m_pStatus->OnWorkStatusChanged(WorkStatus::Ready); } else { m_currentWorkStatus = WorkStatus::Error; m_pStatus->OnWorkStatusChanged(WorkStatus::Error); } m_pStatus->OnStatusUpdate("检测已停止"); } // 设置机械臂工作状态为空闲 return 0; } // 加载调试数据进行检测 int WorkpiecePresenter::LoadDebugDataAndDetect(const std::string& filePath) { LOG_INFO("Loading debug data from file: %s\n", filePath.c_str()); m_currentWorkStatus = WorkStatus::Working; if (m_pStatus) { m_pStatus->OnWorkStatusChanged(WorkStatus::Working); std::string fileName = QFileInfo(QString::fromStdString(filePath)).fileName().toStdString(); m_pStatus->OnStatusUpdate(QString("加载文件:%1").arg(fileName.c_str()).toStdString()); } int lineNum = 0; float scanSpeed = 0.0f; int maxTimeStamp = 0; int clockPerSecond = 0; int result = SUCCESS; // 1. 清空现有的检测数据缓存 _ClearDetectionDataCache(); { std::lock_guard lock(m_detectionDataMutex); // 使用统一的LoadLaserScanData接口,自动判断文件格式 result = m_dataLoader.LoadLaserScanData(filePath, m_detectionDataCache, lineNum, scanSpeed, maxTimeStamp, clockPerSecond); } if (result != SUCCESS) { LOG_ERROR("Failed to load debug data: %s\n", m_dataLoader.GetLastError().c_str()); if (m_pStatus) { m_pStatus->OnStatusUpdate("调试数据加载失败: " + m_dataLoader.GetLastError()); } return result; } LOG_INFO("Successfully loaded %d lines of debug data\n", lineNum); if (m_pStatus) { m_pStatus->OnStatusUpdate(QString("成功加载 %1 行调试数据").arg(lineNum).toStdString()); } // 等待检测完成 result = _DetectTask(); return result; } // 为所有相机设置状态回调 void WorkpiecePresenter::SetCameraStatusCallback(VzNL_OnNotifyStatusCBEx fNotify, void* param) { for (size_t i = 0; i < m_vrEyeDeviceList.size(); i++) { IVrEyeDevice* pDevice = m_vrEyeDeviceList[i].second; if (pDevice) { pDevice->SetStatusCallback(fNotify, param); LOG_DEBUG("Status callback set for camera %zu\n", i + 1); } } } // 打开相机 int WorkpiecePresenter::_OpenDevice(int cameraIndex, const char* cameraName, const char* cameraIp, ProjectType& projectType) { IVrEyeDevice* pDevice = nullptr; IVrEyeDevice::CreateObject(&pDevice); int nRet = pDevice->InitDevice(); ERR_CODE_RETURN(nRet); // 先设置状态回调 nRet = pDevice->SetStatusCallback(&WorkpiecePresenter::_StaticCameraNotify, this); LOG_DEBUG("SetStatusCallback result: %d\n", nRet); ERR_CODE_RETURN(nRet); // 尝试打开相机1 nRet = pDevice->OpenDevice(cameraIp, false); LOG_DEBUG("open camera %d %s result: %d\n", cameraIndex, cameraName, nRet); // 通过回调更新相机1状态 bool cameraConnected = (SUCCESS == nRet); if(!cameraConnected){ delete pDevice; // 释放失败的设备 pDevice = nullptr; } int arrIdx = cameraIndex - 1; if(m_vrEyeDeviceList.size() > arrIdx){ m_vrEyeDeviceList[arrIdx] = std::make_pair(cameraName, pDevice); // 直接存储到索引0 } m_pStatus->OnCamera1StatusChanged(cameraConnected); m_pStatus->OnStatusUpdate(cameraConnected ? "相机连接成功" : "相机连接失败"); m_bCameraConnected = cameraConnected; return nRet; } // 判断是否可以开始检测 bool WorkpiecePresenter::_SinglePreDetection(int cameraIndex) { if(m_vrEyeDeviceList.empty()){ LOG_ERROR("No camera device found\n"); if (nullptr != m_pStatus) { m_pStatus->OnStatusUpdate("未找到相机设备"); } return false; } if(cameraIndex < 1 || cameraIndex > static_cast(m_vrEyeDeviceList.size())){ LOG_ERROR("Invalid camera index: %d, valid range: 1-%zu\n", cameraIndex, m_vrEyeDeviceList.size()); return false; } if(m_vrEyeDeviceList[cameraIndex - 1].second == nullptr){ LOG_ERROR("Camera %d is not connected\n", cameraIndex); return false; } return true; } int WorkpiecePresenter::_SingleDetection(int cameraIndex, bool isStart) { int nRet = SUCCESS; if (isStart) { QString cameraName = (cameraIndex >= 1 && cameraIndex <= static_cast(m_vrEyeDeviceList.size())) ? QString::fromStdString(m_vrEyeDeviceList[cameraIndex - 1].first) : QString("相机%1").arg(cameraIndex); QString message = QString("收到信号,启动%1检测").arg(cameraName); if (nullptr != m_pStatus) { m_pStatus->OnStatusUpdate(message.toStdString()); } nRet = StartDetection(cameraIndex); } else { QString cameraName = (cameraIndex >= 1 && cameraIndex <= static_cast(m_vrEyeDeviceList.size())) ? QString::fromStdString(m_vrEyeDeviceList[cameraIndex - 1].first) : QString("相机%1").arg(cameraIndex); QString message = QString("收到信号,停止%1检测").arg(cameraName); if (nullptr != m_pStatus) { m_pStatus->OnStatusUpdate(message.toStdString()); } nRet = StopDetection(); } return nRet; } // 静态回调函数实现 void WorkpiecePresenter::_StaticCameraNotify(EVzDeviceWorkStatus eStatus, void* pExtData, unsigned int nDataLength, void* pInfoParam) { // 从pInfoParam获取this指针,转换回WorkpiecePresenter*类型 WorkpiecePresenter* pThis = reinterpret_cast(pInfoParam); if (pThis) { // 调用实例的非静态成员函数 pThis->_CameraNotify(eStatus, pExtData, nDataLength, pInfoParam); } } void WorkpiecePresenter::_CameraNotify(EVzDeviceWorkStatus eStatus, void *pExtData, unsigned int nDataLength, void *pInfoParam) { LOG_DEBUG("[Camera Notify] received: status=%d\n", (int)eStatus); switch (eStatus) { case EVzDeviceWorkStatus::keDeviceWorkStatus_Offline: { LOG_WARNING("[Camera Notify] Camera device offline/disconnected\n"); // 更新相机连接状态 m_bCameraConnected = false; // 通知UI相机状态变更 if (m_pStatus) { // 这里需要判断是哪个相机离线,暂时更新相机1状态 // 实际应用中可能需要通过pInfoParam或其他方式区分具体哪个相机 m_pStatus->OnCamera1StatusChanged(false); m_pStatus->OnStatusUpdate("相机设备离线"); } // 检查并更新工作状态 CheckAndUpdateWorkStatus(); break; } case EVzDeviceWorkStatus::keDeviceWorkStatus_Eye_Reconnect: { LOG_INFO("[Camera Notify] Camera device online/connected\n"); // 更新相机连接状态 m_bCameraConnected = true; // 通知UI相机状态变更 if (m_pStatus) { m_pStatus->OnCamera1StatusChanged(true); m_pStatus->OnStatusUpdate("相机设备已连接"); } // 检查并更新工作状态 CheckAndUpdateWorkStatus(); break; } case EVzDeviceWorkStatus::keDeviceWorkStatus_Device_Swing_Finish: { LOG_INFO("[Camera Notify] Received scan finish signal from camera\n"); // 发送页面提示信息 if (m_pStatus) { m_pStatus->OnStatusUpdate("相机扫描完成,开始数据处理..."); } // 通知检测线程开始处理 m_algoDetectCondition.notify_one(); break; } default: break; } } // 检测数据回调函数静态版本 void WorkpiecePresenter::_StaticDetectionCallback(EVzResultDataType eDataType, SVzLaserLineData* pLaserLinePoint, void* pUserData) { WorkpiecePresenter* pThis = reinterpret_cast(pUserData); if (pThis) { pThis->_DetectionCallback(eDataType, pLaserLinePoint, pUserData); } } // 检测数据回调函数实例版本 void WorkpiecePresenter::_DetectionCallback(EVzResultDataType eDataType, SVzLaserLineData* pLaserLinePoint, void* pUserData) { if (!pLaserLinePoint) { LOG_WARNING("[Detection Callback] pLaserLinePoint is null\n"); return; } if (pLaserLinePoint->nPointCount <= 0) { LOG_WARNING("[Detection Callback] Point count is zero or negative: %d\n", pLaserLinePoint->nPointCount); return; } if (!pLaserLinePoint->p3DPoint) { LOG_WARNING("[Detection Callback] p3DPoint is null\n"); return; } // 直接存储SVzLaserLineData到统一缓存中 SVzLaserLineData lineData; memset(&lineData, 0, sizeof(SVzLaserLineData)); // 根据数据类型分配和复制点云数据 if (eDataType == keResultDataType_Position) { // 复制SVzNL3DPosition数据 if (pLaserLinePoint->p3DPoint && pLaserLinePoint->nPointCount > 0) { lineData.p3DPoint = new SVzNL3DPosition[pLaserLinePoint->nPointCount]; if (lineData.p3DPoint) { memcpy(lineData.p3DPoint, pLaserLinePoint->p3DPoint, sizeof(SVzNL3DPosition) * pLaserLinePoint->nPointCount); } lineData.p2DPoint = new SVzNL2DPosition[pLaserLinePoint->nPointCount]; if (lineData.p2DPoint) { memcpy(lineData.p2DPoint, pLaserLinePoint->p2DPoint, sizeof(SVzNL2DPosition) * pLaserLinePoint->nPointCount); } } } else if (eDataType == keResultDataType_PointXYZRGBA) { // 复制SVzNLPointXYZRGBA数据 if (pLaserLinePoint->p3DPoint && pLaserLinePoint->nPointCount > 0) { lineData.p3DPoint = new SVzNLPointXYZRGBA[pLaserLinePoint->nPointCount]; if (lineData.p3DPoint) { memcpy(lineData.p3DPoint, pLaserLinePoint->p3DPoint, sizeof(SVzNLPointXYZRGBA) * pLaserLinePoint->nPointCount); } lineData.p2DPoint = new SVzNL2DLRPoint[pLaserLinePoint->nPointCount]; if (lineData.p2DPoint) { memcpy(lineData.p2DPoint, pLaserLinePoint->p2DPoint, sizeof(SVzNL2DLRPoint) * pLaserLinePoint->nPointCount); } } } lineData.nPointCount = pLaserLinePoint->nPointCount; lineData.llTimeStamp = pLaserLinePoint->llTimeStamp; lineData.llFrameIdx = pLaserLinePoint->llFrameIdx; lineData.nEncodeNo = pLaserLinePoint->nEncodeNo; lineData.fSwingAngle = pLaserLinePoint->fSwingAngle; lineData.bEndOnceScan = pLaserLinePoint->bEndOnceScan; std::lock_guard lock(m_detectionDataMutex); m_detectionDataCache.push_back(std::make_pair(eDataType, lineData)); } void WorkpiecePresenter::CheckAndUpdateWorkStatus() { if (m_bCameraConnected) { m_currentWorkStatus = WorkStatus::Ready; m_pStatus->OnWorkStatusChanged(WorkStatus::Ready); } else { m_currentWorkStatus = WorkStatus::Error; m_pStatus->OnWorkStatusChanged(WorkStatus::Error); } } void WorkpiecePresenter::_AlgoDetectThread() { while(m_bAlgoDetectThreadRunning) { std::unique_lock lock(m_algoDetectMutex); m_algoDetectCondition.wait(lock, [this]() { return m_currentWorkStatus == WorkStatus::Working; }); if(!m_bAlgoDetectThreadRunning){ break; } // 检查设备状态是否准备就绪 int nRet = _DetectTask(); LOG_ERROR("DetectTask result: %d\n", nRet); if(nRet != SUCCESS){ m_pStatus->OnWorkStatusChanged(WorkStatus::Error); } LOG_DEBUG("Algo Thread end\n"); m_currentWorkStatus = WorkStatus::Ready; } } int WorkpiecePresenter::_DetectTask() { LOG_INFO("[Algo Thread] Start real detection task using algorithm\n"); std::lock_guard lock(m_detectionDataMutex); // 1. 获取缓存的点云数据 if (m_detectionDataCache.empty()) { LOG_WARNING("No cached detection data available\n"); if (m_pStatus) { m_pStatus->OnStatusUpdate("无缓存的检测数据"); } return ERR_CODE(DEV_DATA_INVALID); } // 检查检测处理器是否已初始化 if (!m_pDetectPresenter) { LOG_ERROR("DetectPresenter is null, cannot proceed with detection\n"); if (m_pStatus) { m_pStatus->OnStatusUpdate("检测处理器未初始化"); } return ERR_CODE(DEV_NOT_FIND); } // 2. 准备算法输入数据 unsigned int lineNum = 0; lineNum = m_detectionDataCache.size(); if(m_pStatus){ m_pStatus->OnStatusUpdate("扫描线数:" + std::to_string(lineNum) + ",正在算法检测..."); } CVrTimeUtils oTimeUtils; // 获取当前使用的手眼标定矩阵 const CalibMatrix currentClibMatrix = GetClibMatrix(m_currentCameraIndex - 1); DetectionResult detectionResult; int nRet = m_pDetectPresenter->DetectWorkpiece(m_currentCameraIndex, m_detectionDataCache, m_algorithmParams, m_debugParam, m_dataLoader, currentClibMatrix.clibMatrix, detectionResult); // 根据项目类型选择处理方式 if (m_pStatus) { QString err = QString("错误:%1").arg(nRet); m_pStatus->OnStatusUpdate(QString("检测%1").arg(SUCCESS == nRet ? "成功": err).toStdString()); } LOG_INFO("[Algo Thread] sx_getWorkpiecePostion detected %zu objects time : %.2f ms\n", detectionResult.positions.size(), oTimeUtils.GetElapsedTimeInMilliSec()); ERR_CODE_RETURN(nRet); // 8. 返回检测结果 detectionResult.cameraIndex = m_currentCameraIndex; // 调用检测结果回调函数 m_pStatus->OnDetectionResult(detectionResult); // 更新状态 QString statusMsg = QString("检测完成,发现%1个目标").arg(detectionResult.positions.size()); m_pStatus->OnStatusUpdate(statusMsg.toStdString()); // 发送检测结果给TCP客户端 _SendDetectionResultToTCP(detectionResult, m_currentCameraIndex); // 9. 检测完成后,将工作状态更新为"完成" if (m_pStatus) { m_currentWorkStatus = WorkStatus::Completed; m_pStatus->OnWorkStatusChanged(WorkStatus::Completed); } // 恢复到就绪状态 m_currentWorkStatus = WorkStatus::Ready; return SUCCESS; } // 释放缓存的检测数据 void WorkpiecePresenter::_ClearDetectionDataCache() { std::lock_guard lock(m_detectionDataMutex); // 释放加载的数据 m_dataLoader.FreeLaserScanData(m_detectionDataCache); LOG_DEBUG("Detection data cache cleared successfully\n"); } // 实现配置改变通知接口 void WorkpiecePresenter::OnConfigChanged(const ConfigResult& configResult) { LOG_INFO("Configuration changed notification received, reloading algorithm parameters\n"); // 更新调试参数 m_debugParam = configResult.debugParam; // 重新初始化算法参数 int result = InitAlgorithmParams(); if (result == SUCCESS) { LOG_INFO("Algorithm parameters reloaded successfully after config change\n"); if (m_pStatus) { m_pStatus->OnStatusUpdate("配置已更新,算法参数重新加载成功"); } } else { LOG_ERROR("Failed to reload algorithm parameters after config change, error: %d\n", result); if (m_pStatus) { m_pStatus->OnStatusUpdate("配置更新后算法参数重新加载失败"); } } } // 根据相机索引获取调平参数 SSG_planeCalibPara WorkpiecePresenter::_GetCameraCalibParam(int cameraIndex) { // 查找指定相机索引的调平参数 SSG_planeCalibPara calibParam; // 使用单位矩阵(未校准状态) double identityMatrix[9] = {1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0}; for (int i = 0; i < 9; i++) { calibParam.planeCalib[i] = identityMatrix[i]; calibParam.invRMatrix[i] = identityMatrix[i]; } calibParam.planeHeight = -1.0; // 使用默认高度 for (const auto& cameraParam : m_algorithmParams.planeCalibParam.cameraCalibParams) { if (cameraParam.cameraIndex == cameraIndex) { // 根据isCalibrated标志决定使用标定矩阵还是单位矩阵 if (cameraParam.isCalibrated) { // 使用实际的标定矩阵 for (int i = 0; i < 9; i++) { calibParam.planeCalib[i] = cameraParam.planeCalib[i]; calibParam.invRMatrix[i] = cameraParam.invRMatrix[i]; } calibParam.planeHeight = cameraParam.planeHeight; } } } return calibParam; } // 实现IConfigChangeListener接口 void WorkpiecePresenter::OnSystemConfigChanged(const SystemConfig& config) { LOG_INFO("System configuration changed, applying new configuration\n"); // 更新内部配置状态 if (m_vrConfig) { // 可以选择性地重新初始化算法参数 InitAlgorithmParams(); } if (m_pStatus) { m_pStatus->OnStatusUpdate("系统配置已更新"); } } void WorkpiecePresenter::OnCameraParamChanged(int cameraIndex, const CameraUIParam& cameraParam) { LOG_INFO("Camera %d parameters changed: expose=%.2f, gain=%.2f, frameRate=%.2f\n", cameraIndex, cameraParam.exposeTime, cameraParam.gain, cameraParam.frameRate); // 应用相机参数到实际设备 if (cameraIndex >= 1 && cameraIndex <= static_cast(m_vrEyeDeviceList.size())) { IVrEyeDevice* device = m_vrEyeDeviceList[cameraIndex - 1].second; if (device) { // 设置曝光时间 if (cameraParam.exposeTime > 0) { unsigned int exposeTime = static_cast(cameraParam.exposeTime); int ret = device->SetEyeExpose(exposeTime); if (ret == SUCCESS) { LOG_INFO("Set expose time %.2f for camera %d successfully\n", cameraParam.exposeTime, cameraIndex); } else { LOG_ERROR("Failed to set expose time for camera %d, error: %d\n", cameraIndex, ret); } } // 设置增益 if (cameraParam.gain > 0) { unsigned int gain = static_cast(cameraParam.gain); int ret = device->SetEyeGain(gain); if (ret == SUCCESS) { LOG_INFO("Set gain %.2f for camera %d successfully\n", cameraParam.gain, cameraIndex); } else { LOG_ERROR("Failed to set gain for camera %d, error: %d\n", cameraIndex, ret); } } // 设置帧率 if (cameraParam.frameRate > 0) { int frameRate = static_cast(cameraParam.frameRate); int ret = device->SetFrame(frameRate); if (ret == SUCCESS) { LOG_INFO("Set frame rate %.2f for camera %d successfully\n", cameraParam.frameRate, cameraIndex); } else { LOG_ERROR("Failed to set frame rate for camera %d, error: %d\n", cameraIndex, ret); } } // 设置摆动速度 if (cameraParam.swingSpeed > 0) { float swingSpeed = static_cast(cameraParam.swingSpeed); int ret = device->SetSwingSpeed(swingSpeed); if (ret == SUCCESS) { LOG_INFO("Set swing speed %.2f for camera %d successfully\n", cameraParam.swingSpeed, cameraIndex); } else { LOG_ERROR("Failed to set swing speed for camera %d, error: %d\n", cameraIndex, ret); } } // 设置摆动角度 if (cameraParam.swingStartAngle != cameraParam.swingStopAngle) { float startAngle = static_cast(cameraParam.swingStartAngle); float stopAngle = static_cast(cameraParam.swingStopAngle); int ret = device->SetSwingAngle(startAngle, stopAngle); if (ret == SUCCESS) { LOG_INFO("Set swing angle %.2f-%.2f for camera %d successfully\n", cameraParam.swingStartAngle, cameraParam.swingStopAngle, cameraIndex); } else { LOG_ERROR("Failed to set swing angle for camera %d, error: %d\n", cameraIndex, ret); } } } } if (m_pStatus) { QString cameraName = (cameraIndex >= 1 && cameraIndex <= static_cast(m_vrEyeDeviceList.size())) ? QString::fromStdString(m_vrEyeDeviceList[cameraIndex - 1].first) : QString("相机%1").arg(cameraIndex); m_pStatus->OnStatusUpdate(QString("%1参数已更新").arg(cameraName).toStdString()); } } void WorkpiecePresenter::OnAlgorithmParamChanged(const VrAlgorithmParams& algorithmParams) { LOG_INFO("Algorithm parameters changed, updating internal configuration\n"); // 直接更新算法参数 m_algorithmParams = algorithmParams; LOG_INFO("Updated algorithm parameters:\n"); LOG_INFO(" Workpiece: lineLen=%.1f\n", m_algorithmParams.workpieceParam.lineLen); LOG_INFO(" TreeGrow: yDeviation_max=%.1f, zDeviation_max=%.1f, maxLineSkipNum=%d\n", m_algorithmParams.growParam.yDeviation_max, m_algorithmParams.growParam.zDeviation_max, m_algorithmParams.growParam.maxLineSkipNum); LOG_INFO(" Corner: cornerTh=%.3f, jumpCornerTh_1=%.3f, jumpCornerTh_2=%.3f\n", m_algorithmParams.cornerParam.cornerTh, m_algorithmParams.cornerParam.jumpCornerTh_1, m_algorithmParams.cornerParam.jumpCornerTh_2); if (m_pStatus) { m_pStatus->OnStatusUpdate("算法参数已更新"); } } // 设置默认相机索引 void WorkpiecePresenter::SetDefaultCameraIndex(int cameraIndex) { LOG_INFO("Setting default camera index from %d to %d\n", m_currentCameraIndex, cameraIndex); // 验证相机索引的有效性(cameraIndex是配置中的索引,从1开始) if (cameraIndex < 1 || cameraIndex > static_cast(m_vrEyeDeviceList.size())) { LOG_WARNING("Invalid camera index: %d, valid range: 1-%zu\n", cameraIndex, m_vrEyeDeviceList.size()); if (m_pStatus) { m_pStatus->OnStatusUpdate(QString("无效的相机索引: %1,有效范围: 1-%2").arg(cameraIndex).arg(m_vrEyeDeviceList.size()).toStdString()); } return; } // 更新默认相机索引 m_currentCameraIndex = cameraIndex; LOG_INFO("Default camera index updated to %d\n", m_currentCameraIndex); if (m_pStatus) { QString cameraName = (cameraIndex >= 1 && cameraIndex <= static_cast(m_vrEyeDeviceList.size())) ? QString::fromStdString(m_vrEyeDeviceList[cameraIndex - 1].first) : QString("相机%1").arg(cameraIndex); m_pStatus->OnStatusUpdate(QString("设置%1为默认相机").arg(cameraName).toStdString()); } } // 保存检测数据到文件(默认实现) int WorkpiecePresenter::SaveDetectionDataToFile(const std::string& filePath) { LOG_INFO("Saving detection data to file: %s\n", filePath.c_str()); if (m_detectionDataCache.empty()) { LOG_WARNING("No detection data available for saving\n"); return ERR_CODE(DEV_DATA_INVALID); } // 保存数据到文件 int lineNum = static_cast(m_detectionDataCache.size()); float scanSpeed = 0.0f; int maxTimeStamp = 0; int clockPerSecond = 0; int result = m_dataLoader.SaveLaserScanData(filePath, m_detectionDataCache, lineNum, scanSpeed, maxTimeStamp, clockPerSecond); if (result == SUCCESS) { LOG_INFO("Successfully saved %d lines of detection data to file: %s\n", lineNum, filePath.c_str()); } else { LOG_ERROR("Failed to save detection data, error: %s\n", m_dataLoader.GetLastError().c_str()); } return result; }