GrabBag/SDK/bagPosition/begPostionDemo.cpp

988 lines
30 KiB
C++
Raw Normal View History

2025-07-23 01:35:14 +08:00
// bagPositioning_test.cpp : 此文件包含 "main" 函数。程序执行将在此处开始并结束。
//
#include <iostream>
#include <fstream>
#include <vector>
#include <stdio.h>
#include <VZNL_Types.h>
#include "direct.h"
#include <string>
#include "SG_bagPositioning_Export.h"
#include <opencv2/opencv.hpp>
#include <Windows.h>
SVzNL3DPoint _ptRotate(SVzNL3DPoint pt3D, double matrix3d[9])
{
SVzNL3DPoint _r_pt;
_r_pt.x = pt3D.x * matrix3d[0] + pt3D.y * matrix3d[1] + pt3D.z * matrix3d[2];
_r_pt.y = pt3D.x * matrix3d[3] + pt3D.y * matrix3d[4] + pt3D.z * matrix3d[5];
_r_pt.z = pt3D.x * matrix3d[6] + pt3D.y * matrix3d[7] + pt3D.z * matrix3d[8];
return _r_pt;
}
#define DATA_VER_OLD 0
#define DATA_VER_NEW 1
#define DATA_VER_FROM_CUSTOM 2
#define VZ_LASER_LINE_PT_MAX_NUM 4096
SVzNLXYZRGBDLaserLine* vzReadLaserScanPointFromFile_XYZRGB(const char* fileName, int* scanLineNum, float* scanV,
int* dataCalib, int* scanMaxStamp, int* canClockUnit)
{
SVzNLXYZRGBDLaserLine* _scanLines = NULL;
return _scanLines;
}
SVzNL3DLaserLine* vzReadLaserScanPointFromFile_XYZ(const char* fileName, int* scanLineNum, float* scanV,
int* dataCalib, int* scanMaxStamp, int* canClockUnit)
{
SVzNL3DLaserLine* _scanLines = NULL;
return _scanLines;
}
SVzNL3DLaserLine* _convertToGridData_XYZRGB(SVzNLXYZRGBDLaserLine* laser3DPoints, int lineNum, double _F, double* camPoseR, int* outLineNum)
{
SVzNL3DLaserLine* gridData = nullptr;
return gridData;
}
void _outputCalibPara(char* fileName, SSG_planeCalibPara calibPara)
{
std::ofstream sw(fileName);
char dataStr[250];
//调平矩阵
sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.planeCalib[0], calibPara.planeCalib[1], calibPara.planeCalib[2]);
sw << dataStr << std::endl;
sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.planeCalib[3], calibPara.planeCalib[4], calibPara.planeCalib[5]);
sw << dataStr << std::endl;
sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.planeCalib[6], calibPara.planeCalib[7], calibPara.planeCalib[8]);
sw << dataStr << std::endl;
//地面高度
sprintf_s(dataStr, 250, "%g", calibPara.planeHeight);
sw << dataStr << std::endl;
//反向旋转矩阵
sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.invRMatrix[0], calibPara.invRMatrix[1], calibPara.invRMatrix[2]);
sw << dataStr << std::endl;
sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.invRMatrix[3], calibPara.invRMatrix[4], calibPara.invRMatrix[5]);
sw << dataStr << std::endl;
sprintf_s(dataStr, 250, "%g, %g, %g", calibPara.invRMatrix[6], calibPara.invRMatrix[7], calibPara.invRMatrix[8]);
sw << dataStr << std::endl;
sw.close();
}
SSG_planeCalibPara _readCalibPara(char* fileName)
{
//设置初始结果
double initCalib[9] = {
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0 };
SSG_planeCalibPara planePara;
for (int i = 0; i < 9; i++)
planePara.planeCalib[i] = initCalib[i];
planePara.planeHeight = -1.0;
for (int i = 0; i < 9; i++)
planePara.invRMatrix[i] = initCalib[i];
std::ifstream inputFile(fileName);
std::string linedata;
if (inputFile.is_open() == false)
return planePara;
//调平矩阵
std::getline(inputFile, linedata);
sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.planeCalib[0], &planePara.planeCalib[1], &planePara.planeCalib[2]);
std::getline(inputFile, linedata);
sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.planeCalib[3], &planePara.planeCalib[4], &planePara.planeCalib[5]);
std::getline(inputFile, linedata);
sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.planeCalib[6], &planePara.planeCalib[7], &planePara.planeCalib[8]);
//地面高度
std::getline(inputFile, linedata);
sscanf_s(linedata.c_str(), "%lf", &planePara.planeHeight);
//反向旋转矩阵
std::getline(inputFile, linedata);
sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.invRMatrix[0], &planePara.invRMatrix[1], &planePara.invRMatrix[2]);
std::getline(inputFile, linedata);
sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.invRMatrix[3], &planePara.invRMatrix[4], &planePara.invRMatrix[5]);
std::getline(inputFile, linedata);
sscanf_s(linedata.c_str(), "%lf, %lf, %lf", &planePara.invRMatrix[6], &planePara.invRMatrix[7], &planePara.invRMatrix[8]);
inputFile.close();
return planePara;
}
void _outputScanDataFile_self(char* fileName, SVzNL3DLaserLine* scanData, int lineNum,
float lineV, int maxTimeStamp, int clockPerSecond)
{
}
typedef struct
{
int r;
int g;
int b;
}SG_color;
void _outputScanDataFile_RGBD_obj(char* fileName, SVzNL3DLaserLine* scanData, int lineNum,
float lineV, int maxTimeStamp, int clockPerSecond, std::vector<SSG_peakRgnInfo>& objOps)
{
}
void _outputScanDataFile_RGBD_sideBagObj(char* fileName, SVzNL3DLaserLine* scanData, int lineNum,
float lineV, int maxTimeStamp, int clockPerSecond, std::vector<SSG_sideBagInfo>& objOps)
{
}
void EulerRpyToRotation1(double rpy[3], double matrix3d[9]) {
double cos0 = cos(rpy[0]*PI/180);
double sin0 = sin(rpy[0]*PI/180);
double cos1 = cos(rpy[1]*PI/180);
double sin1 = sin(rpy[1]*PI/180);
double cos2 = cos(rpy[2]*PI/180);
double sin2 = sin(rpy[2]*PI/180);
matrix3d[0] = cos2 * cos1;
matrix3d[1] = cos2 * sin1 * sin0 - sin2 * cos0;
matrix3d[2] = cos2 * sin1 * cos0 + sin2 * sin0;
matrix3d[3] = sin2 * cos1;
matrix3d[4] = sin2 * sin1 * sin0 + cos2 * cos0;
matrix3d[5] = sin2 * sin1 * cos0 - cos2 * sin0;
matrix3d[6] = -sin1;
matrix3d[7] = cos1 * sin0;
matrix3d[8] = cos1 * cos0;
return;
}
void _rotateCloudPts(SVzNL3DLaserLine* scanData, int lineNum, double matrix3d[9], std::vector<std::vector< SVzNL3DPosition>>& rotateLines, SVzNLRangeD* rx_range, SVzNLRangeD* ry_range)
{
rx_range->min = 0;
rx_range->max = -1;
ry_range->min = 0;
ry_range->max = -1;
for (int line = 0; line < lineNum; line++)
{
std::vector< SVzNL3DPosition> linePts;
for (int i = 0; i < scanData[line].nPositionCnt; i++)
{
SVzNL3DPosition* pt3D = &scanData[line].p3DPosition[i];
if (pt3D->pt3D.z < 1e-4)
continue;
SVzNL3DPosition r_pt;
r_pt.pt3D = _ptRotate(pt3D->pt3D, matrix3d);
r_pt.nPointIdx = pt3D->nPointIdx;
if (rx_range->max < rx_range->min)
{
rx_range->min = r_pt.pt3D.x;
rx_range->max = r_pt.pt3D.x;
}
else
{
if (rx_range->min > r_pt.pt3D.x)
rx_range->min = r_pt.pt3D.x;
if (rx_range->max < r_pt.pt3D.x)
rx_range->max = r_pt.pt3D.x;
}
if (ry_range->max < ry_range->min)
{
ry_range->min = r_pt.pt3D.y;
ry_range->max = r_pt.pt3D.y;
}
else
{
if (ry_range->min > r_pt.pt3D.y)
ry_range->min = r_pt.pt3D.y;
if (ry_range->max < r_pt.pt3D.y)
ry_range->max = r_pt.pt3D.y;
}
linePts.push_back(r_pt);
}
rotateLines.push_back(linePts);
}
}
void _XOYprojection(cv::Mat& img, std::vector<std::vector< SVzNL3DPosition>>& dataLines, std::vector<SSG_peakRgnInfo>& objOps,
const double x_scale, const double y_scale, const SVzNLRangeD x_range, const SVzNLRangeD y_range, bool drawDirAngle)
{
int x_skip = 16;
int y_skip = 16;
cv::Vec3b rgb = cv::Vec3b(0, 0, 0);
cv::Vec3b objColor[8] = {
{245,222,179},//淡黄色
{210,105, 30},//巧克力色
{240,230,140},//黄褐色
{135,206,235},//天蓝色
{250,235,215},//古董白
{189,252,201},//薄荷色
{221,160,221},//梅红色
{188,143,143},//玫瑰红色
};
int size = 1;
for (int line = 0; line < dataLines.size(); line++)
{
std::vector< SVzNL3DPosition>& a_line = dataLines[line];
for (int i = 0; i < a_line.size(); i++)
{
SVzNL3DPosition* pt3D = &a_line[i];
if (pt3D->pt3D.z < 1e-4)
continue;
int vType = pt3D->nPointIdx & 0xff;
int hType = vType >> 4;
int objId = (pt3D->nPointIdx >> 16) & 0xff;
vType = vType & 0x0f;
if (LINE_FEATURE_L_JUMP_H2L == vType)
{
rgb = { 255, 97, 0 };
size = 2;
}
else if (LINE_FEATURE_L_JUMP_L2H == vType)
{
rgb = { 255, 255, 0 };
size = 2;
}
else if (LINE_FEATURE_V_SLOPE == vType)
{
rgb = { 255, 0, 255 };
size = 2;
}
else if (LINE_FEATURE_L_SLOPE_H2L == vType)
{
rgb = { 160, 82, 45 };
size = 2;
}
else if ((LINE_FEATURE_LINE_ENDING_0 == vType) || (LINE_FEATURE_LINE_ENDING_1 == vType))
{
rgb = { 255, 0, 0 };
size = 2;
}
else if (LINE_FEATURE_L_SLOPE_L2H == vType)
{
rgb = { 233, 150, 122 };
size = 2;
}
else if (LINE_FEATURE_L_JUMP_H2L == hType)
{
rgb = { 0, 0, 255 };
size = 2;
}
else if (LINE_FEATURE_L_JUMP_L2H == hType)
{
rgb = { 0, 255, 255 };
size = 2;
}
else if (LINE_FEATURE_V_SLOPE == hType)
{
rgb = { 0, 255, 0 };
size = 2;
}
else if (LINE_FEATURE_L_SLOPE_H2L == hType)
{
rgb = { 85, 107, 47 };
size = 2;
}
else if (LINE_FEATURE_L_SLOPE_L2H == hType)
{
rgb = { 0, 255, 154 };
size = 2;
}
else if ((LINE_FEATURE_LINE_ENDING_0 == hType) || (LINE_FEATURE_LINE_ENDING_1 == hType))
{
rgb = { 255, 0, 0 };
size = 2;
}
else if (objId > 0) //目标
{
rgb = objColor[objId % 8];
size = 1;
}
else
{
rgb = { 60, 60, 60 };
size = 1;
}
double x = pt3D->pt3D.x;
double y = pt3D->pt3D.y;
int px = (int)((x - x_range.min) / x_scale + x_skip);
int py = (int)((y - y_range.min) / y_scale + y_skip);
if (size == 1)
img.at<cv::Vec3b>(py, px) = cv::Vec3b(rgb[2], rgb[1], rgb[0]);
else
cv::circle(img, cv::Point(px, py), size, cv::Scalar(rgb[2], rgb[1], rgb[0]), -1);
}
}
if (objOps.size() > 0)
{
for (int i = 0; i < objOps.size(); i++)
{
if (i == 0)
{
rgb = { 255, 0, 0 };
size = 20;
}
else
{
rgb = { 255, 255, 0 };
size = 10;
}
int px = (int)((objOps[i].centerPos.x - x_range.min) / x_scale + x_skip);
int py = (int)((objOps[i].centerPos.y - y_range.min) / y_scale + y_skip);
cv::circle(img, cv::Point(px, py), size, cv::Scalar(rgb[2], rgb[1], rgb[0]), -1);
if (true == drawDirAngle)
{
//画线
double R = 100;
const double deg2rad = PI / 180.0;
const double yaw = objOps[i].centerPos.z_yaw * deg2rad;
double cy = cos(yaw); double sy = sin(yaw);
double x1 = objOps[i].centerPos.x + R * cy; double y1 = objOps[i].centerPos.y - R * sy;
double x2 = objOps[i].centerPos.x - R * cy; double y2 = objOps[i].centerPos.y + R * sy;
int px1 = (int)((x1 - x_range.min) / x_scale + x_skip);
int py1 = (int)((y1 - y_range.min) / y_scale + y_skip);
int px2 = (int)((x2 - x_range.min) / x_scale + x_skip);
int py2 = (int)((y2 - y_range.min) / y_scale + y_skip);
cv::line(img, cv::Point(px1, py1), cv::Point(px2, py2), cv::Scalar(rgb[2], rgb[1], rgb[0]), 2);
}
}
}
}
void _XOYprojection_sideBagInfo(cv::Mat& img, std::vector<std::vector< SVzNL3DPosition>>& dataLines, std::vector<SSG_sideBagInfo>& objOps,
const double x_scale, const double y_scale, const SVzNLRangeD x_range, const SVzNLRangeD y_range)
{
int x_skip = 16;
int y_skip = 16;
cv::Vec3b rgb = cv::Vec3b(0, 0, 0);
cv::Vec3b objColor[8] = {
{245,222,179},//淡黄色
{210,105, 30},//巧克力色
{240,230,140},//黄褐色
{135,206,235},//天蓝色
{250,235,215},//古董白
{189,252,201},//薄荷色
{221,160,221},//梅红色
{188,143,143},//玫瑰红色
};
int size = 1;
for (int line = 0; line < dataLines.size(); line++)
{
std::vector< SVzNL3DPosition>& a_line = dataLines[line];
for (int i = 0; i < a_line.size(); i++)
{
SVzNL3DPosition* pt3D = &a_line[i];
if (pt3D->pt3D.z < 1e-4)
continue;
int vType = pt3D->nPointIdx & 0xff;
int hType = vType >> 4;
int objId = (pt3D->nPointIdx >> 16) & 0xffff;
vType = vType & 0x0f;
if (LINE_FEATURE_L_JUMP_H2L == vType)
{
rgb = { 255, 97, 0 };
size = 2;
}
else if (LINE_FEATURE_L_JUMP_L2H == vType)
{
rgb = { 255, 255, 0 };
size = 2;
}
else if (LINE_FEATURE_V_SLOPE == vType)
{
rgb = { 255, 0, 255 };
size = 2;
}
else if (LINE_FEATURE_L_SLOPE_H2L == vType)
{
rgb = { 160, 82, 45 };
size = 2;
}
else if ((LINE_FEATURE_LINE_ENDING_0 == vType) || (LINE_FEATURE_LINE_ENDING_1 == vType))
{
rgb = { 255, 0, 0 };
size = 2;
}
else if (LINE_FEATURE_L_SLOPE_L2H == vType)
{
rgb = { 233, 150, 122 };
size = 2;
}
else if (LINE_FEATURE_L_JUMP_H2L == hType)
{
rgb = { 0, 0, 255 };
size = 2;
}
else if (LINE_FEATURE_L_JUMP_L2H == hType)
{
rgb = { 0, 255, 255 };
size = 2;
}
else if (LINE_FEATURE_V_SLOPE == hType)
{
rgb = { 0, 255, 0 };
size = 2;
}
else if (LINE_FEATURE_L_SLOPE_H2L == hType)
{
rgb = { 85, 107, 47 };
size = 2;
}
else if (LINE_FEATURE_L_SLOPE_L2H == hType)
{
rgb = { 0, 255, 154 };
size = 2;
}
else if ((LINE_FEATURE_LINE_ENDING_0 == hType) || (LINE_FEATURE_LINE_ENDING_1 == hType))
{
rgb = { 255, 0, 0 };
size = 2;
}
else if ( (objId > 0) &&( objId< 1000)) //目标
{
rgb = objColor[objId % 8];
size = 3;
}
else
{
rgb = { 150, 150, 150 };
size = 1;
}
double x = pt3D->pt3D.x;
double y = pt3D->pt3D.y;
int px = (int)((x - x_range.min) / x_scale + x_skip);
int py = (int)((y - y_range.min) / y_scale + y_skip);
if (size == 1)
img.at<cv::Vec3b>(py, px) = cv::Vec3b(rgb[2], rgb[1], rgb[0]);
else
cv::circle(img, cv::Point(px, py), size, cv::Scalar(rgb[2], rgb[1], rgb[0]), -1);
}
}
if (objOps.size() > 0)
{
for (int i = 0; i < objOps.size(); i++)
{
if (i == 0)
{
rgb = { 255, 0, 0 };
size = 20;
}
else
{
rgb = { 255, 255, 0 };
size = 10;
}
int px = (int)((objOps[i].graspPos.x - x_range.min) / x_scale + x_skip);
int py = (int)((objOps[i].graspPos.y - y_range.min) / y_scale + y_skip);
cv::circle(img, cv::Point(px, py), size, cv::Scalar(rgb[2], rgb[1], rgb[0]), -1);
//画ROI
size = 3;
cv::Point2d vec2d[4];
vec2d[0].x = objOps[i].objROI.left; vec2d[0].y = objOps[i].objROI.top;
vec2d[1].x = objOps[i].objROI.right; vec2d[1].y = objOps[i].objROI.top;
vec2d[2].x = objOps[i].objROI.right; vec2d[2].y = objOps[i].objROI.bottom;
vec2d[3].x = objOps[i].objROI.left; vec2d[3].y = objOps[i].objROI.bottom;
cv::Point vec[4];
for (int j = 0; j < 4; j++)
{
vec[j].x = (int)((vec2d[j].x - x_range.min) / x_scale + x_skip);
vec[j].y = (int)((vec2d[j].y - y_range.min) / y_scale + y_skip);
}
for (int j = 0; j < 4; j++)
{
int nxtIdx = (j + 1) % 4;
cv::line(img, vec[j], vec[nxtIdx], cv::Scalar(rgb[2], rgb[1], rgb[0]), size);
}
//画倾角
double r = 50;
double angle = objOps[i].graspPos.z_yaw;
angle = -angle * PI / 180;
cv::Point2d line_pt[2];
line_pt[0].x = (int)(r * cos(angle) + px);
line_pt[0].y = (int)(-r * sin(angle) + py);
line_pt[1].x = (int)(-r * cos(angle) + px);
line_pt[1].y = (int)(r * sin(angle) + py);
cv::line(img, line_pt[0], line_pt[1], cv::Scalar(rgb[2], rgb[1], rgb[0]), size);
}
}
}
void _genXOYProjectionImage(cv::String& fileName, SVzNL3DLaserLine* scanData, int lineNum, std::vector<SSG_peakRgnInfo>& objOps, double rpy[3])
{
//统计X和Y的范围
std::vector<std::vector< SVzNL3DPosition>> scan_lines;
SVzNLRangeD x_range = {0, -1};
SVzNLRangeD y_range = {0, -1};
for (int line = 0; line < lineNum; line++)
{
std::vector< SVzNL3DPosition> a_line;
for (int i = 0; i < scanData[line].nPositionCnt; i++)
{
SVzNL3DPosition* pt3D = &scanData[line].p3DPosition[i];
if (pt3D->pt3D.z < 1e-4)
continue;
a_line.push_back(*pt3D);
if (x_range.max < x_range.min)
{
x_range.min = pt3D->pt3D.x;
x_range.max = pt3D->pt3D.x;
}
else
{
if(x_range.min > pt3D->pt3D.x)
x_range.min = pt3D->pt3D.x;
if(x_range.max < pt3D->pt3D.x)
x_range.max = pt3D->pt3D.x;
}
if (y_range.max < y_range.min)
{
y_range.min = pt3D->pt3D.y;
y_range.max = pt3D->pt3D.y;
}
else
{
if (y_range.min > pt3D->pt3D.y)
y_range.min = pt3D->pt3D.y;
if (y_range.max < pt3D->pt3D.y)
y_range.max = pt3D->pt3D.y;
}
}
scan_lines.push_back(a_line);
}
int imgRows = 992;
int imgCols = 1056;
double y_rows = 960.0;
double x_cols = 1024.0;
cv::Mat img = cv::Mat::zeros(imgRows, imgCols, CV_8UC3);
//计算投影比例
double x_scale = (x_range.max - x_range.min) / x_cols;
double y_scale = (y_range.max - y_range.min) / y_rows;
_XOYprojection(img, scan_lines, objOps, x_scale, y_scale, x_range, y_range, true);
//旋转视角显示
double matrix3d[9];
EulerRpyToRotation1(rpy, matrix3d);
std::vector<SSG_peakRgnInfo> r_objOps;
r_objOps.insert(r_objOps.end(), objOps.begin(), objOps.end());
for (int i = 0; i < objOps.size(); i++)
{
SVzNL3DPoint c_pt = { objOps[i].centerPos .x, objOps[i].centerPos .y, objOps[i].centerPos .z};
SVzNL3DPoint r_c_pt = _ptRotate(c_pt, matrix3d);
r_objOps[i].centerPos.x = r_c_pt.x;
r_objOps[i].centerPos.y = r_c_pt.y;
r_objOps[i].centerPos.z = r_c_pt.z;
}
std::vector<std::vector< SVzNL3DPosition>> rotateLines;
SVzNLRangeD rx_range, ry_range;
_rotateCloudPts(scanData, lineNum, matrix3d, rotateLines, &rx_range, &ry_range);
cv::Mat r_img = cv::Mat::zeros(imgRows, imgCols, CV_8UC3);
//计算投影比例
double rx_scale = (rx_range.max - rx_range.min) / x_cols;
double ry_scale = (ry_range.max - ry_range.min) / y_rows;
_XOYprojection(r_img, rotateLines, r_objOps, rx_scale, ry_scale, rx_range, ry_range, false);
cv::Mat dis_img;
cv::hconcat(img, r_img, dis_img);
cv::imwrite(fileName, dis_img);
return;
}
void _genXOYProjectionImage_sideBagInfo(cv::String& fileName, SVzNL3DLaserLine* scanData, int lineNum, std::vector<SSG_sideBagInfo>& objOps, double rpy[3])
{
//统计X和Y的范围
std::vector<std::vector< SVzNL3DPosition>> scan_lines;
SVzNLRangeD x_range = { 0, -1 };
SVzNLRangeD y_range = { 0, -1 };
for (int line = 0; line < lineNum; line++)
{
std::vector< SVzNL3DPosition> a_line;
for (int i = 0; i < scanData[line].nPositionCnt; i++)
{
SVzNL3DPosition* pt3D = &scanData[line].p3DPosition[i];
if (pt3D->pt3D.z < 1e-4)
continue;
a_line.push_back(*pt3D);
if (x_range.max < x_range.min)
{
x_range.min = pt3D->pt3D.x;
x_range.max = pt3D->pt3D.x;
}
else
{
if (x_range.min > pt3D->pt3D.x)
x_range.min = pt3D->pt3D.x;
if (x_range.max < pt3D->pt3D.x)
x_range.max = pt3D->pt3D.x;
}
if (y_range.max < y_range.min)
{
y_range.min = pt3D->pt3D.y;
y_range.max = pt3D->pt3D.y;
}
else
{
if (y_range.min > pt3D->pt3D.y)
y_range.min = pt3D->pt3D.y;
if (y_range.max < pt3D->pt3D.y)
y_range.max = pt3D->pt3D.y;
}
}
scan_lines.push_back(a_line);
}
double x_scale = 1.0;
double y_scale = 1.0;
int x_rows = int((x_range.max - x_range.min) / x_scale);
int y_rows = int((y_range.max - y_range.min) / y_scale);
if (x_rows % 2 > 0)
x_rows += 1;
if (y_rows % 2 > 0)
y_rows += 1;
int imgRows = y_rows + 32;
int imgCols = x_rows + 32;
cv::Mat img = cv::Mat::zeros(imgRows, imgCols, CV_8UC3);
//计算投影比例
_XOYprojection_sideBagInfo(img, scan_lines, objOps, x_scale, y_scale, x_range, y_range);
#if 0
//旋转视角显示
double matrix3d[9];
EulerRpyToRotation1(rpy, matrix3d);
std::vector<SSG_sideBagInfo> r_objOps;
r_objOps.insert(r_objOps.end(), objOps.begin(), objOps.end());
for (int i = 0; i < objOps.size(); i++)
{
SVzNL3DPoint c_pt = { objOps[i].graspPos.x, objOps[i].graspPos.y, objOps[i].graspPos.z };
SVzNL3DPoint r_c_pt = _ptRotate(c_pt, matrix3d);
r_objOps[i].graspPos.x = r_c_pt.x;
r_objOps[i].graspPos.y = r_c_pt.y;
r_objOps[i].graspPos.z = r_c_pt.z;
}
std::vector<std::vector< SVzNL3DPosition>> rotateLines;
SVzNLRangeD rx_range, ry_range;
_rotateCloudPts(scanData, lineNum, matrix3d, rotateLines, &rx_range, &ry_range);
cv::Mat r_img = cv::Mat::zeros(imgRows, imgCols, CV_8UC3);
//计算投影比例
double rx_scale = (rx_range.max - rx_range.min) / x_cols;
double ry_scale = (ry_range.max - ry_range.min) / y_rows;
_XOYprojection_sideBagInfo(r_img, rotateLines, r_objOps, rx_scale, ry_scale, rx_range, ry_range);
cv::Mat dis_img;
cv::hconcat(img, r_img, dis_img);
cv::imwrite(fileName, dis_img);
#else
cv::Mat rot;
cv::rotate(img, rot, cv::ROTATE_90_CLOCKWISE); // 顺时针90°旋转
cv::flip(rot, img, 1); // 左右翻转
cv::imwrite(fileName, img);
#endif
return;
}
//量化成640*640左右大小的图像。
void project2DWithInterpolate(cv::Mat& img, SVzNL3DLaserLine* scanData, int lineNum, double fixed_xy_scale, double z_scale)
{
double namedSize = 640.0;//目标图像最大尺度为640像素
SVzNLRangeD x_range = { 0, -1 };
SVzNLRangeD y_range = { 0, -1 };
SVzNLRangeD z_range = { 0, -1 };
for (int line = 0; line < lineNum; line++)
{
for (int i = 0; i < scanData[line].nPositionCnt; i++)
{
SVzNL3DPosition* pt3D = &scanData[line].p3DPosition[i];
if (pt3D->pt3D.z < 1e-4)
continue;
if (x_range.max < x_range.min)
{
x_range.min = pt3D->pt3D.x;
x_range.max = pt3D->pt3D.x;
}
else
{
if (x_range.min > pt3D->pt3D.x)
x_range.min = pt3D->pt3D.x;
if (x_range.max < pt3D->pt3D.x)
x_range.max = pt3D->pt3D.x;
}
if (y_range.max < y_range.min)
{
y_range.min = pt3D->pt3D.y;
y_range.max = pt3D->pt3D.y;
}
else
{
if (y_range.min > pt3D->pt3D.y)
y_range.min = pt3D->pt3D.y;
if (y_range.max < pt3D->pt3D.y)
y_range.max = pt3D->pt3D.y;
}
if (z_range.max < z_range.min)
{
z_range.min = pt3D->pt3D.z;
z_range.max = pt3D->pt3D.z;
}
else
{
if (z_range.min > pt3D->pt3D.z)
z_range.min = pt3D->pt3D.z;
if (z_range.max < pt3D->pt3D.z)
z_range.max = pt3D->pt3D.z;
}
}
}
double xy_scale = fixed_xy_scale;
if (fixed_xy_scale < 1e-4)
{
double x_scale = (x_range.max - x_range.min) / namedSize;
double y_scale = (y_range.max - y_range.min) / namedSize;
double xy_scale;
if (x_scale < y_scale)
xy_scale = y_scale;
else
xy_scale = x_scale;
}
int img_rows = (int)((y_range.max - y_range.min) / xy_scale)+1;
if(img_rows %2 >0)
img_rows +=1;
int img_cols = (int)((x_range.max - x_range.min) / xy_scale)+ 1;
if (img_cols % 2 > 0)
img_cols += 1;
img = cv::Mat::zeros(img_rows, img_cols, CV_8UC1);
int polateWin = 5;
for (int line = 0; line < lineNum; line++)
{
//同时进行垂直插值
int pre_py = -1;
SVzNL3DPosition* pre_pt3D = NULL;
int pre_i = -1;
for (int i = 0; i < scanData[line].nPositionCnt; i++)
{
SVzNL3DPosition* pt3D = &scanData[line].p3DPosition[i];
if (pt3D->pt3D.z < 1e-4)
continue;
double x = pt3D->pt3D.x;
double y = pt3D->pt3D.y;
int px = (int)((x - x_range.min) / xy_scale);
int py = (int)((y - y_range.min) / xy_scale);
int value = (int)((pt3D->pt3D.z - z_range.min) / z_scale);
if (value > 254)
value = 254;
value = 255 - value;
img.at<uchar>(py, px) = (uchar)value;
//检查是否需要插值
if ( (py > pre_py + 1)&& (py <= pre_py + polateWin + 1) && (pre_py >= 0) && (pre_i >= 0) && (i == pre_i + 1)) //3D点连续量化点不连续插值
{
double dist = double(py - pre_py);
for (int iy = pre_py + 1; iy < py; iy++)
{
double k1 = (double)(iy - pre_py) / dist;
double k0 = 1 - k1;
double inter_x = pre_pt3D->pt3D.x * k0 + pt3D->pt3D.x * k1;
double inter_y = pre_pt3D->pt3D.y * k0 + pt3D->pt3D.y * k1;
double inter_z = pre_pt3D->pt3D.z * k0 + pt3D->pt3D.z * k1;
int polate_px = (int)((inter_x - x_range.min) / xy_scale);
int polate_py = (int)((inter_y - y_range.min) / xy_scale);
int polate_value = (int)((inter_z - z_range.min) / z_scale);
if (polate_value > 254)
polate_value = 254;
polate_value = 255 - polate_value;
img.at<uchar>(polate_py, polate_px) = (uchar)polate_value;
}
}
pre_i = i;
pre_py = py;
pre_pt3D = pt3D;
}
}
//水平插值
for (int y = 0; y < img.rows; y++)
{
int pre_x = -1;
uchar pre_value = 0;
for (int x = 0; x < img.cols; x++)
{
uchar value = img.at<uchar>(y, x);
if (value > 0)
{
if ((x > pre_x + 1) && (x <= pre_x + polateWin + 1) &&(pre_x >= 0)) //水平不连续,插值
{
double dist = double(x - pre_x);
for (int ix = pre_x + 1; ix < x; ix++)
{
double k1 = (double)(ix - pre_x) / dist;
double k0 = 1 - k1;
double inter_data = (double)pre_value * k0 + (double)value * k1;
if (inter_data > 255)
inter_data = 255;
uchar polate_value = (uchar)inter_data;
img.at<uchar>(y, ix) = polate_value;
}
}
pre_x = x;
pre_value = value;
}
}
}
}
void _outputScanDataFile_removeZeros(char* fileName, SVzNL3DLaserLine* scanData, int lineNum,
float lineV, int maxTimeStamp, int clockPerSecond)
{
std::ofstream sw(fileName);
sw << "LineNum:" << lineNum << std::endl;
sw << "DataType: 0" << std::endl;
sw << "ScanSpeed:" << lineV << std::endl;
sw << "PointAdjust: 1" << std::endl;
sw << "MaxTimeStamp:" << maxTimeStamp << "_" << clockPerSecond << std::endl;
for (int line = 0; line < lineNum; line++)
{
int realNum = 0;
for (int i = 0; i < scanData[line].nPositionCnt; i++)
{
if (scanData[line].p3DPosition[i].pt3D.z > 1e-4)
realNum++;
}
sw << "Line_" << line << "_" << scanData[line].nTimeStamp << "_" << realNum << std::endl;
for (int i = 0; i < scanData[line].nPositionCnt; i++)
{
if (scanData[line].p3DPosition[i].pt3D.z > 1e-4)
{
SVzNL3DPosition* pt3D = &scanData[line].p3DPosition[i];
float x = (float)pt3D->pt3D.x;
float y = (float)pt3D->pt3D.y;
float z = (float)pt3D->pt3D.z;
sw << "{ " << x << "," << y << "," << z << " }-";
sw << "{0,0}-{0,0}" << std::endl;
}
}
}
sw.close();
}
#define TEST_CONVERT_TO_GRID 0
#define TEST_COMPUTE_GRASP_POINT 1
#define TEST_COMPUTE_CALIB_PARA 1
#define TEST_GROUP 16
int main()
{
/**
*
*/
char _calib_datafile[256];
sprintf_s(_calib_datafile, "F:\\上古\\编织袋数据\\点云8_广东1213-1215数据\\LaserLine10_grid.txt");
int lineNum = 0;
float lineV = 0.0f;
int dataCalib = 0;
int maxTimeStamp = 0;
int clockPerSecond = 0;
SVzNL3DLaserLine* laser3DPoints = vzReadLaserScanPointFromFile_XYZ(_calib_datafile, &lineNum, &lineV, &dataCalib, &maxTimeStamp, &clockPerSecond);
if (laser3DPoints)
{
SSG_planeCalibPara calibPara = sg_getBagBaseCalibPara(laser3DPoints, lineNum);
//结果进行验证
for (int i = 0; i < lineNum; i++)
{
//调平,去除地面
sg_lineDataR(&laser3DPoints[i], calibPara.planeCalib, calibPara.planeHeight);
}
//
char calibFile[250];
sprintf_s(calibFile, "F:\\上古\\编织袋数据\\点云8_广东1213-1215数据\\ground_calib_para.txt");
_outputCalibPara(calibFile, calibPara);
char _out_file[256];
sprintf_s(_out_file, "F:\\上古\\编织袋数据\\点云8_广东1213-1215数据\\LaserLine10_grid_calib.txt");
_outputScanDataFile_self(_out_file, laser3DPoints, lineNum, lineV, maxTimeStamp, clockPerSecond);
printf("%s: calib done!\n", _calib_datafile);
}
/**
*
*/
const char* dataPath = "F:\\ShangGu\\编织袋数据\\点云1\\";
SSG_planeCalibPara poseCalibPara;
//初始化成单位阵
poseCalibPara.planeCalib[0] = 1.0;
poseCalibPara.planeCalib[1] = 0.0;
poseCalibPara.planeCalib[2] = 0.0;
poseCalibPara.planeCalib[3] = 0.0;
poseCalibPara.planeCalib[4] = 1.0;
poseCalibPara.planeCalib[5] = 0.0;
poseCalibPara.planeCalib[6] = 0.0;
poseCalibPara.planeCalib[7] = 0.0;
poseCalibPara.planeCalib[8] = 1.0;
poseCalibPara.planeHeight = -1.0;
for (int i = 0; i < 9; i++)
poseCalibPara.invRMatrix[i] = poseCalibPara.planeCalib[i];
SG_bagPositionParam algoParam;
algoParam.bagParam.bagL = 650; //袋子长65cm
algoParam.bagParam.bagW = 450; //袋子宽40cm
algoParam.bagParam.bagH = 160; //袋子高16cm
algoParam.cornerParam.cornerTh = 30; //45度角
algoParam.cornerParam.scale = 15; // 30; // algoParam.bagParam.bagH / 8;
algoParam.cornerParam.minEndingGap = algoParam.bagParam.bagW / 4;
algoParam.cornerParam.jumpCornerTh_1 = 60;
algoParam.cornerParam.jumpCornerTh_2 = 15;
algoParam.growParam.maxLineSkipNum = 5;
algoParam.growParam.yDeviation_max = 20.0;
algoParam.growParam.maxSkipDistance = 20.0;
algoParam.growParam.zDeviation_max = 80.0; //袋子高度1/2
algoParam.growParam.minLTypeTreeLen = 50.0; //mm
algoParam.growParam.minVTypeTreeLen = 50.0; //mm
char calibFile[250];
sprintf_s(calibFile, "F:\\上古\\编织袋数据\\点云8_广东1213-1215数据\\ground_calib_para.txt");
poseCalibPara = _readCalibPara(calibFile);
algoParam.filterParam.continuityTh = 20.0; //噪声滤除。当相邻点的z跳变大于此门限时检查是否为噪声。若长度小于outlierLen 视为噪声
algoParam.filterParam.outlierTh = 5;
long t1 = GetTickCount64();
std::vector<SSG_peakRgnInfo> objOps;
sg_getBagPosition(laser3DPoints, lineNum, algoParam, poseCalibPara, objOps);
long t2 = GetTickCount64();
char _dbg_file[256];
sprintf_s(_dbg_file, "%sresult\\LaserLine%d_result.txt", dataPath[grp], fidx);
_outputScanDataFile_RGBD_obj(_dbg_file, laser3DPoints, lineNum, lineV, maxTimeStamp, clockPerSecond, objOps);
sprintf_s(_dbg_file, "%sresult\\LaserLine%d_result_img.png", dataPath[grp], fidx);
cv::String imgName(_dbg_file);
double rpy[3] = { -30, 15, 0 }; //{ 0,-45, 0 }; //
_genXOYProjectionImage(imgName, laser3DPoints, lineNum, objOps, rpy);
printf("%s: %d(ms)!\n", _scan_file, (int)(t2 - t1));
}