341 lines
9.7 KiB
HTML
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

<!DOCTYPE html>
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>Benchmarking 3D &mdash; Point Cloud Library 1.12.0 documentation</title>
<script type="text/javascript" src="_static/js/modernizr.min.js"></script>
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="_static/language_data.js"></script>
<script type="text/javascript" src="_static/js/theme.js"></script>
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
</head>
<body class="wy-body-for-nav">
<div class="wy-grid-for-nav">
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
<div class="wy-side-scroll">
<div class="wy-side-nav-search" >
<a href="index.html" class="icon icon-home"> Point Cloud Library
</a>
<div class="version">
1.12.0
</div>
<div role="search">
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
<input type="text" name="q" placeholder="Search docs" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
</div>
</div>
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
<!-- Local TOC -->
<div class="local-toc"><ul>
<li><a class="reference internal" href="#">Benchmarking 3D</a></li>
<li><a class="reference internal" href="#benchmarking-object-recognition">Benchmarking Object Recognition</a><ul>
<li><a class="reference internal" href="#training">1. Training</a></li>
<li><a class="reference internal" href="#keypoints">2. Keypoints</a></li>
<li><a class="reference internal" href="#descriptors">3. Descriptors</a></li>
<li><a class="reference internal" href="#classification">4. Classification</a></li>
<li><a class="reference internal" href="#evaluation">5. Evaluation</a><ul>
<li><a class="reference internal" href="#metrics">5.1 Metrics</a><ul>
<li><a class="reference internal" href="#object-recognition-api">Object Recognition API</a></li>
</ul>
</li>
</ul>
</li>
<li><a class="reference internal" href="#id1">1. Training</a></li>
<li><a class="reference internal" href="#id2">2. Keypoints</a></li>
<li><a class="reference internal" href="#id3">3. Descriptors</a></li>
<li><a class="reference internal" href="#id4">4. Classification</a></li>
<li><a class="reference internal" href="#id5">5. Evaluation</a></li>
</ul>
</li>
</ul>
</div>
</div>
</div>
</nav>
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
<nav class="wy-nav-top" aria-label="top navigation">
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
<a href="index.html">Point Cloud Library</a>
</nav>
<div class="wy-nav-content">
<div class="rst-content">
<div role="navigation" aria-label="breadcrumbs navigation">
<ul class="wy-breadcrumbs">
<li><a href="index.html">Docs</a> &raquo;</li>
<li>Benchmarking 3D</li>
<li class="wy-breadcrumbs-aside">
</li>
</ul>
<hr/>
</div>
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">
<div class="section" id="benchmarking-3d">
<span id="benchmarking"></span><h1>Benchmarking 3D</h1>
<p>This document introduces benchmarking concepts for 3D algorithms. By
<em>benchmarking</em> here we refer to the possibility of testing different
computational pipelines in an <strong>easy manner</strong>. The goal is to test their
reproductibility with respect to a particular problem of general interest.</p>
</div>
<div class="section" id="benchmarking-object-recognition">
<h1>Benchmarking Object Recognition</h1>
<p>For the general problem of Object Recognition (identification, categorization,
detection, etc all fall in the same category here), we identify the
following steps:</p>
<div class="section" id="training">
<h2>1. Training</h2>
<p>Users should be able to acquire training data from different inputs, including
but not limited to:</p>
<blockquote>
<div><ul class="simple">
<li>full triangle meshes (CAD models);</li>
<li>360-degree full point cloud models;</li>
<li>partial point cloud views:<ul>
<li>in clutter;</li>
<li>cleanly segmented.</li>
</ul>
</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="keypoints">
<h2>2. Keypoints</h2>
<p>Computing higher level representation from the objects appearance (texture + depth) should be done:</p>
<blockquote>
<div><ul class="simple">
<li><strong>densely</strong> - at every point/vertex in the input data;</li>
<li>at certain <strong>interest points</strong> (i.e., keypoints).</li>
</ul>
</div></blockquote>
<p>The detected keypoint might also contain some meta-information required by some descriptors, like scale or orientation.</p>
</div>
<div class="section" id="descriptors">
<h2>3. Descriptors</h2>
<p>A higher level representation as mentioned before will be herein represented by a <strong>feature descriptor</strong>. Feature descriptors can be:</p>
<blockquote>
<div><ul class="simple">
<li>2D (two-dimensional) here we refer to those descriptors estimated solely from RGB texture data;</li>
<li>3D (three-dimensional) here we refer to those descriptors estimated solely from XYZ/depth data;</li>
<li>a combination of the above.</li>
</ul>
</div></blockquote>
<p>In addition, feature descriptors can be:</p>
<blockquote>
<div><ul class="simple">
<li><strong>local</strong> - estimated only at a set of discrete keypoints, using the information from neighboring pixels/points;</li>
<li><strong>global</strong>, or meta-local - estimated on entire objects or the entire input dataset.</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="classification">
<h2>4. Classification</h2>
<p>The distribution of features should be classifiable into distinct, separable
classes. For local features, we identify two sets of techniques:</p>
<blockquote>
<div><ul class="simple">
<li><strong>bag of words</strong>;</li>
<li><strong>voting</strong>;</li>
<li><strong>supervised voting</strong> (regression from the description to the relative 3D location, e.g. Hough forest).</li>
</ul>
</div></blockquote>
<p>For global features, any general purpose classification technique should work (e.g., SVMs, nearest neighbors, etc).</p>
<p>In addition to classification, a substep of it could be considered
<strong>Registration</strong>. Here we refine the classification results using iterative
closest point techniques for example.</p>
</div>
<div class="section" id="evaluation">
<h2>5. Evaluation</h2>
<p>This pipeline should be able to evaluate the algorithms performance at
different tasks. Here are some requested tasks to support:</p>
<blockquote>
<div><ul class="simple">
<li>object id and pose</li>
<li>object id and segmentation</li>
<li>object id and bounding box</li>
<li>category and segmentation</li>
<li>category and bounding box</li>
</ul>
</div></blockquote>
<div class="section" id="metrics">
<h3>5.1 Metrics</h3>
<p>This pipeline should provide different metrics, since algorithms excel in
different areas. Here are some requested metrics:</p>
<blockquote>
<div><ul class="simple">
<li>precision-recall</li>
<li>time</li>
<li>average rank of correct id</li>
<li>area under curve of cumulative histogram of rank of correct id</li>
</ul>
</div></blockquote>
<div class="section" id="object-recognition-api">
<h4>Object Recognition API</h4>
<p>Here we describe a proposed set of classes that could be easily extended and
used for the purpose of benchmarking object recognition tasks.</p>
</div>
</div>
</div>
<div class="section" id="id1">
<h2>1. Training</h2>
</div>
<div class="section" id="id2">
<h2>2. Keypoints</h2>
</div>
<div class="section" id="id3">
<h2>3. Descriptors</h2>
</div>
<div class="section" id="id4">
<h2>4. Classification</h2>
</div>
<div class="section" id="id5">
<h2>5. Evaluation</h2>
<p>The evaluation output needs to be one of the following:</p>
<blockquote>
<div><ul class="simple">
<li>object id</li>
<li>object pose</li>
<li>object category</li>
<li>object bounding box</li>
<li>object mask</li>
</ul>
</div></blockquote>
</div>
</div>
</div>
</div>
<footer>
<hr/>
<div role="contentinfo">
<p>
&copy; Copyright
</p>
</div>
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
</footer>
</div>
</div>
</section>
</div>
<script type="text/javascript">
jQuery(function () {
SphinxRtdTheme.Navigation.enable(true);
});
</script>
</body>
</html>