176 lines
5.6 KiB
C++
176 lines
5.6 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* Author : Christian Potthast
|
|
* Email : potthast@usc.edu
|
|
*
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <pcl/memory.h>
|
|
#include <pcl/pcl_macros.h>
|
|
#include <pcl/point_cloud.h>
|
|
#include <pcl/point_types.h>
|
|
|
|
#include <pcl/features/fpfh.h>
|
|
#include <pcl/features/normal_3d.h>
|
|
|
|
#include <pcl/ml/kmeans.h>
|
|
|
|
namespace pcl
|
|
{
|
|
/** \brief
|
|
*
|
|
*/
|
|
template <typename PointT>
|
|
class PCL_EXPORTS UnaryClassifier
|
|
{
|
|
public:
|
|
|
|
/** \brief Constructor that sets default values for member variables. */
|
|
UnaryClassifier ();
|
|
|
|
/** \brief This destructor destroys the cloud...
|
|
*
|
|
*/
|
|
~UnaryClassifier ();
|
|
|
|
/** \brief This method sets the input cloud.
|
|
* \param[in] input_cloud input point cloud
|
|
*/
|
|
void
|
|
setInputCloud (typename pcl::PointCloud<PointT>::Ptr input_cloud);
|
|
|
|
void
|
|
train (pcl::PointCloud<pcl::FPFHSignature33>::Ptr &output);
|
|
|
|
void
|
|
trainWithLabel (std::vector<pcl::PointCloud<pcl::FPFHSignature33>, Eigen::aligned_allocator<pcl::PointCloud<pcl::FPFHSignature33> > > &output);
|
|
|
|
void
|
|
segment (pcl::PointCloud<pcl::PointXYZRGBL>::Ptr &out);
|
|
|
|
void
|
|
queryFeatureDistances (std::vector<pcl::PointCloud<pcl::FPFHSignature33>::Ptr> &trained_features,
|
|
pcl::PointCloud<pcl::FPFHSignature33>::Ptr query_features,
|
|
pcl::Indices &indi,
|
|
std::vector<float> &dist);
|
|
|
|
void
|
|
assignLabels (pcl::Indices &indi,
|
|
std::vector<float> &dist,
|
|
int n_feature_means,
|
|
float feature_threshold,
|
|
pcl::PointCloud<pcl::PointXYZRGBL>::Ptr out);
|
|
|
|
void
|
|
setClusterSize (unsigned int k){cluster_size_ = k;};
|
|
|
|
void
|
|
setNormalRadiusSearch (float param){normal_radius_search_ = param;};
|
|
|
|
void
|
|
setFPFHRadiusSearch (float param){fpfh_radius_search_ = param;};
|
|
|
|
void
|
|
setLabelField (bool l){label_field_ = l;};
|
|
|
|
void
|
|
setTrainedFeatures (std::vector<pcl::PointCloud<pcl::FPFHSignature33>::Ptr> &features){trained_features_ = features;};
|
|
|
|
void
|
|
setFeatureThreshold (float threshold){feature_threshold_ = threshold;};
|
|
|
|
protected:
|
|
|
|
void
|
|
convertCloud (typename pcl::PointCloud<PointT>::Ptr in,
|
|
pcl::PointCloud<pcl::PointXYZ>::Ptr out);
|
|
|
|
void
|
|
convertCloud (typename pcl::PointCloud<PointT>::Ptr in,
|
|
pcl::PointCloud<pcl::PointXYZRGBL>::Ptr out);
|
|
|
|
void
|
|
findClusters (typename pcl::PointCloud<PointT>::Ptr in,
|
|
std::vector<int> &cluster_numbers);
|
|
|
|
void
|
|
getCloudWithLabel (typename pcl::PointCloud<PointT>::Ptr in,
|
|
pcl::PointCloud<pcl::PointXYZ>::Ptr out,
|
|
int label_num);
|
|
|
|
void
|
|
computeFPFH (pcl::PointCloud<pcl::PointXYZ>::Ptr in,
|
|
pcl::PointCloud<pcl::FPFHSignature33>::Ptr out,
|
|
float normal_radius_search,
|
|
float fpfh_radius_search);
|
|
|
|
void
|
|
kmeansClustering (pcl::PointCloud<pcl::FPFHSignature33>::Ptr in,
|
|
pcl::PointCloud<pcl::FPFHSignature33>::Ptr out,
|
|
int k);
|
|
|
|
|
|
|
|
/** \brief Contains the input cloud */
|
|
typename pcl::PointCloud<PointT>::Ptr input_cloud_;
|
|
|
|
bool label_field_;
|
|
|
|
unsigned int cluster_size_;
|
|
|
|
float normal_radius_search_;
|
|
float fpfh_radius_search_;
|
|
float feature_threshold_;
|
|
|
|
|
|
std::vector<pcl::PointCloud<pcl::FPFHSignature33>::Ptr> trained_features_;
|
|
|
|
/** \brief Contains normals of the points that will be segmented. */
|
|
//typename pcl::PointCloud<pcl::Normal>::Ptr normals_;
|
|
|
|
/** \brief Stores the cloud that will be segmented. */
|
|
//typename pcl::PointCloud<PointT>::Ptr cloud_for_segmentation_;
|
|
|
|
public:
|
|
PCL_MAKE_ALIGNED_OPERATOR_NEW
|
|
};
|
|
}
|
|
|
|
#ifdef PCL_NO_PRECOMPILE
|
|
#include <pcl/segmentation/impl/unary_classifier.hpp>
|
|
#endif
|