128 lines
4.5 KiB
C++
128 lines
4.5 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright (c) 2010, Willow Garage, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $Id$
|
|
*
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <pcl/segmentation/segment_differences.h>
|
|
|
|
#include <pcl/common/io.h>
|
|
#include <pcl/common/point_tests.h> // for pcl::isFinite
|
|
#include <pcl/search/organized.h> // for OrganizedNeighbor
|
|
#include <pcl/search/kdtree.h> // for KdTree
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT> void
|
|
pcl::getPointCloudDifference (
|
|
const pcl::PointCloud<PointT> &src,
|
|
double threshold,
|
|
const typename pcl::search::Search<PointT>::Ptr &tree,
|
|
pcl::PointCloud<PointT> &output)
|
|
{
|
|
// We're interested in a single nearest neighbor only
|
|
Indices nn_indices (1);
|
|
std::vector<float> nn_distances (1);
|
|
|
|
// The input cloud indices that do not have a neighbor in the target cloud
|
|
Indices src_indices;
|
|
|
|
// Iterate through the source data set
|
|
for (index_t i = 0; i < static_cast<index_t> (src.size ()); ++i)
|
|
{
|
|
// Ignore invalid points in the inpout cloud
|
|
if (!isFinite (src[i]))
|
|
continue;
|
|
// Search for the closest point in the target data set (number of neighbors to find = 1)
|
|
if (!tree->nearestKSearch (src[i], 1, nn_indices, nn_distances))
|
|
{
|
|
PCL_WARN ("No neighbor found for point %lu (%f %f %f)!\n", i, src[i].x, src[i].y, src[i].z);
|
|
continue;
|
|
}
|
|
// Add points without a corresponding point in the target cloud to the output cloud
|
|
if (nn_distances[0] > threshold)
|
|
src_indices.push_back (i);
|
|
}
|
|
|
|
// Copy all the data fields from the input cloud to the output one
|
|
copyPointCloud (src, src_indices, output);
|
|
|
|
// Output is always dense, as invalid points in the input cloud are ignored
|
|
output.is_dense = true;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////////////////////////////////////////
|
|
//////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT> void
|
|
pcl::SegmentDifferences<PointT>::segment (PointCloud &output)
|
|
{
|
|
output.header = input_->header;
|
|
|
|
if (!initCompute ())
|
|
{
|
|
output.width = output.height = 0;
|
|
output.clear ();
|
|
return;
|
|
}
|
|
|
|
// If target is empty, input - target = input
|
|
if (target_->points.empty ())
|
|
{
|
|
output = *input_;
|
|
return;
|
|
}
|
|
|
|
// Initialize the spatial locator
|
|
if (!tree_)
|
|
{
|
|
if (target_->isOrganized ())
|
|
tree_.reset (new pcl::search::OrganizedNeighbor<PointT> ());
|
|
else
|
|
tree_.reset (new pcl::search::KdTree<PointT> (false));
|
|
}
|
|
// Send the input dataset to the spatial locator
|
|
tree_->setInputCloud (target_);
|
|
|
|
getPointCloudDifference (*input_, distance_threshold_, tree_, output);
|
|
|
|
deinitCompute ();
|
|
}
|
|
|
|
#define PCL_INSTANTIATE_SegmentDifferences(T) template class PCL_EXPORTS pcl::SegmentDifferences<T>;
|
|
#define PCL_INSTANTIATE_getPointCloudDifference(T) template PCL_EXPORTS void pcl::getPointCloudDifference<T>(const pcl::PointCloud<T> &, double, const typename pcl::search::Search<T>::Ptr &, pcl::PointCloud<T> &);
|
|
|