457 lines
20 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/console/print.h> // for PCL_ERROR
#include <pcl/pcl_base.h>
#include <pcl/search/search.h> // for Search
#include <pcl/search/kdtree.h> // for KdTree
namespace pcl
{
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Decompose a region of space into clusters based on the Euclidean distance between points
* \param cloud the point cloud message
* \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
* \note the tree has to be created as a spatial locator on \a cloud
* \param tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
* \param clusters the resultant clusters containing point indices (as a vector of PointIndices)
* \param min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
* \param max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
* \ingroup segmentation
*/
template <typename PointT> void
extractEuclideanClusters (
const PointCloud<PointT> &cloud, const typename search::Search<PointT>::Ptr &tree,
float tolerance, std::vector<PointIndices> &clusters,
unsigned int min_pts_per_cluster = 1, unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ());
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Decompose a region of space into clusters based on the Euclidean distance between points
* \param cloud the point cloud message
* \param indices a list of point indices to use from \a cloud
* \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
* \note the tree has to be created as a spatial locator on \a cloud and \a indices
* \param tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
* \param clusters the resultant clusters containing point indices (as a vector of PointIndices)
* \param min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
* \param max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
* \ingroup segmentation
*/
template <typename PointT> void
extractEuclideanClusters (
const PointCloud<PointT> &cloud, const Indices &indices,
const typename search::Search<PointT>::Ptr &tree, float tolerance, std::vector<PointIndices> &clusters,
unsigned int min_pts_per_cluster = 1, unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ());
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Decompose a region of space into clusters based on the euclidean distance between points, and the normal
* angular deviation between points. Each point added to the cluster is origin to another radius search. Each point
* within radius range will be compared to the origin in respect to normal angle and euclidean distance. If both
* are under their respective threshold the point will be added to the cluster. Generally speaking the cluster
* algorithm will not stop on smooth surfaces but on surfaces with sharp edges.
* \param cloud the point cloud message
* \param normals the point cloud message containing normal information
* \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
* \note the tree has to be created as a spatial locator on \a cloud
* \param tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
* \param clusters the resultant clusters containing point indices (as a vector of PointIndices)
* \param eps_angle the maximum allowed difference between normals in radians for cluster/region growing
* \param min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
* \param max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
* \ingroup segmentation
*/
template <typename PointT, typename Normal> void
extractEuclideanClusters (
const PointCloud<PointT> &cloud, const PointCloud<Normal> &normals,
float tolerance, const typename KdTree<PointT>::Ptr &tree,
std::vector<PointIndices> &clusters, double eps_angle,
unsigned int min_pts_per_cluster = 1,
unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ())
{
if (tree->getInputCloud ()->size () != cloud.size ())
{
PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different point "
"cloud dataset (%zu) than the input cloud (%zu)!\n",
static_cast<std::size_t>(tree->getInputCloud()->size()),
static_cast<std::size_t>(cloud.size()));
return;
}
if (cloud.size () != normals.size ())
{
PCL_ERROR("[pcl::extractEuclideanClusters] Number of points in the input point "
"cloud (%zu) different than normals (%zu)!\n",
static_cast<std::size_t>(cloud.size()),
static_cast<std::size_t>(normals.size()));
return;
}
const double cos_eps_angle = std::cos (eps_angle); // compute this once instead of acos many times (faster)
// Create a bool vector of processed point indices, and initialize it to false
std::vector<bool> processed (cloud.size (), false);
Indices nn_indices;
std::vector<float> nn_distances;
// Process all points in the indices vector
for (std::size_t i = 0; i < cloud.size (); ++i)
{
if (processed[i])
continue;
Indices seed_queue;
int sq_idx = 0;
seed_queue.push_back (static_cast<index_t> (i));
processed[i] = true;
while (sq_idx < static_cast<int> (seed_queue.size ()))
{
// Search for sq_idx
if (!tree->radiusSearch (seed_queue[sq_idx], tolerance, nn_indices, nn_distances))
{
sq_idx++;
continue;
}
for (std::size_t j = 1; j < nn_indices.size (); ++j) // nn_indices[0] should be sq_idx
{
if (processed[nn_indices[j]]) // Has this point been processed before ?
continue;
//processed[nn_indices[j]] = true;
// [-1;1]
double dot_p = normals[seed_queue[sq_idx]].normal[0] * normals[nn_indices[j]].normal[0] +
normals[seed_queue[sq_idx]].normal[1] * normals[nn_indices[j]].normal[1] +
normals[seed_queue[sq_idx]].normal[2] * normals[nn_indices[j]].normal[2];
if ( std::abs (dot_p) > cos_eps_angle )
{
processed[nn_indices[j]] = true;
seed_queue.push_back (nn_indices[j]);
}
}
sq_idx++;
}
// If this queue is satisfactory, add to the clusters
if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster)
{
pcl::PointIndices r;
r.indices.resize (seed_queue.size ());
for (std::size_t j = 0; j < seed_queue.size (); ++j)
r.indices[j] = seed_queue[j];
// These two lines should not be needed: (can anyone confirm?) -FF
std::sort (r.indices.begin (), r.indices.end ());
r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ());
r.header = cloud.header;
clusters.push_back (r); // We could avoid a copy by working directly in the vector
}
else
{
PCL_DEBUG("[pcl::extractEuclideanClusters] This cluster has %zu points, which is not between %u and %u points, so it is not a final cluster\n",
seed_queue.size (), min_pts_per_cluster, max_pts_per_cluster);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Decompose a region of space into clusters based on the euclidean distance between points, and the normal
* angular deviation between points. Each point added to the cluster is origin to another radius search. Each point
* within radius range will be compared to the origin in respect to normal angle and euclidean distance. If both
* are under their respective threshold the point will be added to the cluster. Generally speaking the cluster
* algorithm will not stop on smooth surfaces but on surfaces with sharp edges.
* \param cloud the point cloud message
* \param normals the point cloud message containing normal information
* \param indices a list of point indices to use from \a cloud
* \param tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
* \note the tree has to be created as a spatial locator on \a cloud
* \param tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
* \param clusters the resultant clusters containing point indices (as PointIndices)
* \param eps_angle the maximum allowed difference between normals in radians for cluster/region growing
* \param min_pts_per_cluster minimum number of points that a cluster may contain (default: 1)
* \param max_pts_per_cluster maximum number of points that a cluster may contain (default: max int)
* \ingroup segmentation
*/
template <typename PointT, typename Normal>
void extractEuclideanClusters (
const PointCloud<PointT> &cloud, const PointCloud<Normal> &normals,
const Indices &indices, const typename KdTree<PointT>::Ptr &tree,
float tolerance, std::vector<PointIndices> &clusters, double eps_angle,
unsigned int min_pts_per_cluster = 1,
unsigned int max_pts_per_cluster = (std::numeric_limits<int>::max) ())
{
// \note If the tree was created over <cloud, indices>, we guarantee a 1-1 mapping between what the tree returns
//and indices[i]
if (tree->getInputCloud()->size() != cloud.size()) {
PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different point "
"cloud dataset (%zu) than the input cloud (%zu)!\n",
static_cast<std::size_t>(tree->getInputCloud()->size()),
static_cast<std::size_t>(cloud.size()));
return;
}
if (tree->getIndices()->size() != indices.size()) {
PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different set of "
"indices (%zu) than the input set (%zu)!\n",
static_cast<std::size_t>(tree->getIndices()->size()),
indices.size());
return;
}
if (cloud.size() != normals.size()) {
PCL_ERROR("[pcl::extractEuclideanClusters] Number of points in the input point "
"cloud (%zu) different than normals (%zu)!\n",
static_cast<std::size_t>(cloud.size()),
static_cast<std::size_t>(normals.size()));
return;
}
const double cos_eps_angle = std::cos (eps_angle); // compute this once instead of acos many times (faster)
// Create a bool vector of processed point indices, and initialize it to false
std::vector<bool> processed (cloud.size (), false);
Indices nn_indices;
std::vector<float> nn_distances;
// Process all points in the indices vector
for (const auto& point_idx : indices)
{
if (processed[point_idx])
continue;
Indices seed_queue;
int sq_idx = 0;
seed_queue.push_back (point_idx);
processed[point_idx] = true;
while (sq_idx < static_cast<int> (seed_queue.size ()))
{
// Search for sq_idx
if (!tree->radiusSearch (cloud[seed_queue[sq_idx]], tolerance, nn_indices, nn_distances))
{
sq_idx++;
continue;
}
for (std::size_t j = 1; j < nn_indices.size (); ++j) // nn_indices[0] should be sq_idx
{
if (processed[nn_indices[j]]) // Has this point been processed before ?
continue;
//processed[nn_indices[j]] = true;
// [-1;1]
double dot_p = normals[seed_queue[sq_idx]].normal[0] * normals[nn_indices[j]].normal[0] +
normals[seed_queue[sq_idx]].normal[1] * normals[nn_indices[j]].normal[1] +
normals[seed_queue[sq_idx]].normal[2] * normals[nn_indices[j]].normal[2];
if ( std::abs (dot_p) > cos_eps_angle )
{
processed[nn_indices[j]] = true;
seed_queue.push_back (nn_indices[j]);
}
}
sq_idx++;
}
// If this queue is satisfactory, add to the clusters
if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster)
{
pcl::PointIndices r;
r.indices.resize (seed_queue.size ());
for (std::size_t j = 0; j < seed_queue.size (); ++j)
r.indices[j] = seed_queue[j];
// These two lines should not be needed: (can anyone confirm?) -FF
std::sort (r.indices.begin (), r.indices.end ());
r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ());
r.header = cloud.header;
clusters.push_back (r);
}
else
{
PCL_DEBUG("[pcl::extractEuclideanClusters] This cluster has %zu points, which is not between %u and %u points, so it is not a final cluster\n",
seed_queue.size (), min_pts_per_cluster, max_pts_per_cluster);
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief @b EuclideanClusterExtraction represents a segmentation class for cluster extraction in an Euclidean sense.
* \author Radu Bogdan Rusu
* \ingroup segmentation
*/
template <typename PointT>
class EuclideanClusterExtraction: public PCLBase<PointT>
{
using BasePCLBase = PCLBase<PointT>;
public:
using PointCloud = pcl::PointCloud<PointT>;
using PointCloudPtr = typename PointCloud::Ptr;
using PointCloudConstPtr = typename PointCloud::ConstPtr;
using KdTree = pcl::search::Search<PointT>;
using KdTreePtr = typename KdTree::Ptr;
using PointIndicesPtr = PointIndices::Ptr;
using PointIndicesConstPtr = PointIndices::ConstPtr;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Empty constructor. */
EuclideanClusterExtraction () : tree_ (),
cluster_tolerance_ (0),
min_pts_per_cluster_ (1),
max_pts_per_cluster_ (std::numeric_limits<pcl::uindex_t>::max ())
{};
/** \brief Provide a pointer to the search object.
* \param[in] tree a pointer to the spatial search object.
*/
inline void
setSearchMethod (const KdTreePtr &tree)
{
tree_ = tree;
}
/** \brief Get a pointer to the search method used.
* @todo fix this for a generic search tree
*/
inline KdTreePtr
getSearchMethod () const
{
return (tree_);
}
/** \brief Set the spatial cluster tolerance as a measure in the L2 Euclidean space
* \param[in] tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
*/
inline void
setClusterTolerance (double tolerance)
{
cluster_tolerance_ = tolerance;
}
/** \brief Get the spatial cluster tolerance as a measure in the L2 Euclidean space. */
inline double
getClusterTolerance () const
{
return (cluster_tolerance_);
}
/** \brief Set the minimum number of points that a cluster needs to contain in order to be considered valid.
* \param[in] min_cluster_size the minimum cluster size
*/
inline void
setMinClusterSize (pcl::uindex_t min_cluster_size)
{
min_pts_per_cluster_ = min_cluster_size;
}
/** \brief Get the minimum number of points that a cluster needs to contain in order to be considered valid. */
inline pcl::uindex_t
getMinClusterSize () const
{
return (min_pts_per_cluster_);
}
/** \brief Set the maximum number of points that a cluster needs to contain in order to be considered valid.
* \param[in] max_cluster_size the maximum cluster size
*/
inline void
setMaxClusterSize (pcl::uindex_t max_cluster_size)
{
max_pts_per_cluster_ = max_cluster_size;
}
/** \brief Get the maximum number of points that a cluster needs to contain in order to be considered valid. */
inline pcl::uindex_t
getMaxClusterSize () const
{
return (max_pts_per_cluster_);
}
/** \brief Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
* \param[out] clusters the resultant point clusters
*/
void
extract (std::vector<PointIndices> &clusters);
protected:
// Members derived from the base class
using BasePCLBase::input_;
using BasePCLBase::indices_;
using BasePCLBase::initCompute;
using BasePCLBase::deinitCompute;
/** \brief A pointer to the spatial search object. */
KdTreePtr tree_;
/** \brief The spatial cluster tolerance as a measure in the L2 Euclidean space. */
double cluster_tolerance_;
/** \brief The minimum number of points that a cluster needs to contain in order to be considered valid (default = 1). */
pcl::uindex_t min_pts_per_cluster_;
/** \brief The maximum number of points that a cluster needs to contain in order to be considered valid (default = MAXINT). */
pcl::uindex_t max_pts_per_cluster_;
/** \brief Class getName method. */
virtual std::string getClassName () const { return ("EuclideanClusterExtraction"); }
};
/** \brief Sort clusters method (for std::sort).
* \ingroup segmentation
*/
inline bool
comparePointClusters (const pcl::PointIndices &a, const pcl::PointIndices &b)
{
return (a.indices.size () < b.indices.size ());
}
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/segmentation/impl/extract_clusters.hpp>
#endif