thirdParty/PCL 1.12.0/include/pcl-1.12/pcl/segmentation/euclidean_cluster_comparator.h

205 lines
6.8 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
*
*/
#pragma once
#include <set> // for std::set
#include <pcl/memory.h>
#include <pcl/pcl_macros.h>
#include <pcl/point_types.h>
#include <pcl/segmentation/comparator.h>
namespace pcl
{
/** \brief EuclideanClusterComparator is a comparator used for finding clusters based on euclidian distance.
*
* \author Alex Trevor
*/
template<typename PointT, typename PointLT = pcl::Label>
class EuclideanClusterComparator : public ::pcl::Comparator<PointT>
{
protected:
using pcl::Comparator<PointT>::input_;
public:
using typename Comparator<PointT>::PointCloud;
using typename Comparator<PointT>::PointCloudConstPtr;
using PointCloudL = pcl::PointCloud<PointLT>;
using PointCloudLPtr = typename PointCloudL::Ptr;
using PointCloudLConstPtr = typename PointCloudL::ConstPtr;
using Ptr = shared_ptr<EuclideanClusterComparator<PointT, PointLT> >;
using ConstPtr = shared_ptr<const EuclideanClusterComparator<PointT, PointLT> >;
using ExcludeLabelSet = std::set<std::uint32_t>;
using ExcludeLabelSetPtr = shared_ptr<ExcludeLabelSet>;
using ExcludeLabelSetConstPtr = shared_ptr<const ExcludeLabelSet>;
/** \brief Default constructor for EuclideanClusterComparator. */
EuclideanClusterComparator() = default;
void
setInputCloud (const PointCloudConstPtr& cloud) override
{
input_ = cloud;
Eigen::Matrix3f rot = input_->sensor_orientation_.toRotationMatrix ();
z_axis_ = rot.col (2);
}
/** \brief Set the tolerance in meters for difference in perpendicular distance (d component of plane equation) to the plane between neighboring points, to be considered part of the same plane.
* \param[in] distance_threshold the tolerance in meters
* \param depth_dependent
*/
inline void
setDistanceThreshold (float distance_threshold, bool depth_dependent)
{
distance_threshold_ = distance_threshold;
depth_dependent_ = depth_dependent;
}
/** \brief Get the distance threshold in meters (d component of plane equation) between neighboring points, to be considered part of the same plane. */
inline float
getDistanceThreshold () const
{
return distance_threshold_;
}
/** \brief Get if depth dependent */
inline bool
getDepthDependent() const
{
return depth_dependent_;
}
/** \brief Set label cloud
* \param[in] labels The label cloud
*/
void
setLabels (const PointCloudLPtr& labels)
{
labels_ = labels;
}
/** \brief Get labels */
const PointCloudLPtr&
getLabels() const
{
return labels_;
}
/** \brief Get exlude labels */
const ExcludeLabelSetConstPtr&
getExcludeLabels () const
{
return exclude_labels_;
}
/** \brief Set labels in the label cloud to exclude.
* \param exclude_labels a vector of bools corresponding to whether or not a given label should be considered
*/
void
setExcludeLabels (const ExcludeLabelSetConstPtr &exclude_labels)
{
exclude_labels_ = exclude_labels;
}
/** \brief Compare points at two indices by their euclidean distance
* \param idx1 The first index for the comparison
* \param idx2 The second index for the comparison
*/
bool
compare (int idx1, int idx2) const override
{
if (labels_ && exclude_labels_)
{
assert (labels_->size () == input_->size ());
const std::uint32_t &label1 = (*labels_)[idx1].label;
const std::uint32_t &label2 = (*labels_)[idx2].label;
const std::set<std::uint32_t>::const_iterator it1 = exclude_labels_->find (label1);
if (it1 == exclude_labels_->end ())
return false;
const std::set<std::uint32_t>::const_iterator it2 = exclude_labels_->find (label2);
if (it2 == exclude_labels_->end ())
return false;
}
float dist_threshold = distance_threshold_;
if (depth_dependent_)
{
Eigen::Vector3f vec = (*input_)[idx1].getVector3fMap ();
float z = vec.dot (z_axis_);
dist_threshold *= z * z;
}
const float dist = ((*input_)[idx1].getVector3fMap ()
- (*input_)[idx2].getVector3fMap ()).norm ();
return (dist < dist_threshold);
}
protected:
/** \brief Set of labels with similar size as the input point cloud,
* aggregating points into groups based on a similar label identifier.
*
* It needs to be set in conjunction with the \ref exclude_labels_
* member in order to provided a masking functionality.
*/
PointCloudLPtr labels_;
/** \brief Specifies which labels should be excluded com being clustered.
*
* If a label is not specified, it's assumed by default that it's
* intended be excluded
*/
ExcludeLabelSetConstPtr exclude_labels_;
float distance_threshold_ = 0.005f;
bool depth_dependent_ = false;
Eigen::Vector3f z_axis_;
};
}