thirdParty/PCL 1.12.0/include/pcl-1.12/pcl/registration/transformation_estimation_lm.h

351 lines
13 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/registration/transformation_estimation.h>
#include <pcl/registration/warp_point_rigid.h>
#include <pcl/memory.h>
namespace pcl {
namespace registration {
/** @b TransformationEstimationLM implements Levenberg Marquardt-based
* estimation of the transformation aligning the given correspondences.
*
* \note The class is templated on the source and target point types as well as on the
* output scalar of the transformation matrix (i.e., float or double). Default: float.
* \author Radu B. Rusu
* \ingroup registration
*/
template <typename PointSource, typename PointTarget, typename MatScalar = float>
class TransformationEstimationLM
: public TransformationEstimation<PointSource, PointTarget, MatScalar> {
using PointCloudSource = pcl::PointCloud<PointSource>;
using PointCloudSourcePtr = typename PointCloudSource::Ptr;
using PointCloudSourceConstPtr = typename PointCloudSource::ConstPtr;
using PointCloudTarget = pcl::PointCloud<PointTarget>;
using PointIndicesPtr = PointIndices::Ptr;
using PointIndicesConstPtr = PointIndices::ConstPtr;
public:
using Ptr =
shared_ptr<TransformationEstimationLM<PointSource, PointTarget, MatScalar>>;
using ConstPtr =
shared_ptr<const TransformationEstimationLM<PointSource, PointTarget, MatScalar>>;
using VectorX = Eigen::Matrix<MatScalar, Eigen::Dynamic, 1>;
using Vector4 = Eigen::Matrix<MatScalar, 4, 1>;
using Matrix4 =
typename TransformationEstimation<PointSource, PointTarget, MatScalar>::Matrix4;
/** \brief Constructor. */
TransformationEstimationLM();
/** \brief Copy constructor.
* \param[in] src the TransformationEstimationLM object to copy into this
*/
TransformationEstimationLM(const TransformationEstimationLM& src)
: tmp_src_(src.tmp_src_)
, tmp_tgt_(src.tmp_tgt_)
, tmp_idx_src_(src.tmp_idx_src_)
, tmp_idx_tgt_(src.tmp_idx_tgt_)
, warp_point_(src.warp_point_){};
/** \brief Copy operator.
* \param[in] src the TransformationEstimationLM object to copy into this
*/
TransformationEstimationLM&
operator=(const TransformationEstimationLM& src)
{
tmp_src_ = src.tmp_src_;
tmp_tgt_ = src.tmp_tgt_;
tmp_idx_src_ = src.tmp_idx_src_;
tmp_idx_tgt_ = src.tmp_idx_tgt_;
warp_point_ = src.warp_point_;
}
/** \brief Destructor. */
~TransformationEstimationLM(){};
/** \brief Estimate a rigid rotation transformation between a source and a target
* point cloud using LM. \param[in] cloud_src the source point cloud dataset
* \param[in] cloud_tgt the target point cloud dataset
* \param[out] transformation_matrix the resultant transformation matrix
*/
inline void
estimateRigidTransformation(const pcl::PointCloud<PointSource>& cloud_src,
const pcl::PointCloud<PointTarget>& cloud_tgt,
Matrix4& transformation_matrix) const override;
/** \brief Estimate a rigid rotation transformation between a source and a target
* point cloud using LM. \param[in] cloud_src the source point cloud dataset
* \param[in] indices_src the vector of indices describing the points of interest in
* \a cloud_src
* \param[in] cloud_tgt the target point cloud dataset
* \param[out] transformation_matrix the resultant transformation matrix
*/
inline void
estimateRigidTransformation(const pcl::PointCloud<PointSource>& cloud_src,
const pcl::Indices& indices_src,
const pcl::PointCloud<PointTarget>& cloud_tgt,
Matrix4& transformation_matrix) const override;
/** \brief Estimate a rigid rotation transformation between a source and a target
* point cloud using LM. \param[in] cloud_src the source point cloud dataset
* \param[in] indices_src the vector of indices describing the points of interest in
* \a cloud_src
* \param[in] cloud_tgt the target point cloud dataset
* \param[in] indices_tgt the vector of indices describing the correspondences of the
* interest points from \a indices_src
* \param[out] transformation_matrix the resultant transformation matrix
*/
inline void
estimateRigidTransformation(const pcl::PointCloud<PointSource>& cloud_src,
const pcl::Indices& indices_src,
const pcl::PointCloud<PointTarget>& cloud_tgt,
const pcl::Indices& indices_tgt,
Matrix4& transformation_matrix) const override;
/** \brief Estimate a rigid rotation transformation between a source and a target
* point cloud using LM. \param[in] cloud_src the source point cloud dataset
* \param[in] cloud_tgt the target point cloud dataset
* \param[in] correspondences the vector of correspondences between source and target
* point cloud \param[out] transformation_matrix the resultant transformation matrix
*/
inline void
estimateRigidTransformation(const pcl::PointCloud<PointSource>& cloud_src,
const pcl::PointCloud<PointTarget>& cloud_tgt,
const pcl::Correspondences& correspondences,
Matrix4& transformation_matrix) const override;
/** \brief Set the function we use to warp points. Defaults to rigid 6D warp.
* \param[in] warp_fcn a shared pointer to an object that warps points
*/
void
setWarpFunction(
const typename WarpPointRigid<PointSource, PointTarget, MatScalar>::Ptr& warp_fcn)
{
warp_point_ = warp_fcn;
}
protected:
/** \brief Compute the distance between a source point and its corresponding target
* point \param[in] p_src The source point \param[in] p_tgt The target point \return
* The distance between \a p_src and \a p_tgt
*
* \note Older versions of PCL used this method internally for calculating the
* optimization gradient. Since PCL 1.7, a switch has been made to the
* computeDistance method using Vector4 types instead. This method is only
* kept for API compatibility reasons.
*/
virtual MatScalar
computeDistance(const PointSource& p_src, const PointTarget& p_tgt) const
{
Vector4 s(p_src.x, p_src.y, p_src.z, 0);
Vector4 t(p_tgt.x, p_tgt.y, p_tgt.z, 0);
return ((s - t).norm());
}
/** \brief Compute the distance between a source point and its corresponding target
* point \param[in] p_src The source point \param[in] p_tgt The target point \return
* The distance between \a p_src and \a p_tgt
*
* \note A different distance function can be defined by creating a subclass of
* TransformationEstimationLM and overriding this method.
* (See \a TransformationEstimationPointToPlane)
*/
virtual MatScalar
computeDistance(const Vector4& p_src, const PointTarget& p_tgt) const
{
Vector4 t(p_tgt.x, p_tgt.y, p_tgt.z, 0);
return ((p_src - t).norm());
}
/** \brief Temporary pointer to the source dataset. */
mutable const PointCloudSource* tmp_src_;
/** \brief Temporary pointer to the target dataset. */
mutable const PointCloudTarget* tmp_tgt_;
/** \brief Temporary pointer to the source dataset indices. */
mutable const pcl::Indices* tmp_idx_src_;
/** \brief Temporary pointer to the target dataset indices. */
mutable const pcl::Indices* tmp_idx_tgt_;
/** \brief The parameterized function used to warp the source to the target. */
typename pcl::registration::WarpPointRigid<PointSource, PointTarget, MatScalar>::Ptr
warp_point_;
/** Base functor all the models that need non linear optimization must
* define their own one and implement operator() (const Eigen::VectorXd& x,
* Eigen::VectorXd& fvec) or operator() (const Eigen::VectorXf& x, Eigen::VectorXf&
* fvec) depending on the chosen _Scalar
*/
template <typename _Scalar, int NX = Eigen::Dynamic, int NY = Eigen::Dynamic>
struct Functor {
using Scalar = _Scalar;
enum { InputsAtCompileTime = NX, ValuesAtCompileTime = NY };
using InputType = Eigen::Matrix<_Scalar, InputsAtCompileTime, 1>;
using ValueType = Eigen::Matrix<_Scalar, ValuesAtCompileTime, 1>;
using JacobianType =
Eigen::Matrix<_Scalar, ValuesAtCompileTime, InputsAtCompileTime>;
/** \brief Empty Constructor. */
Functor() : m_data_points_(ValuesAtCompileTime) {}
/** \brief Constructor
* \param[in] m_data_points number of data points to evaluate.
*/
Functor(int m_data_points) : m_data_points_(m_data_points) {}
/** \brief Destructor. */
virtual ~Functor() {}
/** \brief Get the number of values. */
int
values() const
{
return (m_data_points_);
}
protected:
int m_data_points_;
};
struct OptimizationFunctor : public Functor<MatScalar> {
using Functor<MatScalar>::values;
/** Functor constructor
* \param[in] m_data_points the number of data points to evaluate
* \param[in,out] estimator pointer to the estimator object
*/
OptimizationFunctor(int m_data_points, const TransformationEstimationLM* estimator)
: Functor<MatScalar>(m_data_points), estimator_(estimator)
{}
/** Copy constructor
* \param[in] src the optimization functor to copy into this
*/
inline OptimizationFunctor(const OptimizationFunctor& src)
: Functor<MatScalar>(src.m_data_points_), estimator_()
{
*this = src;
}
/** Copy operator
* \param[in] src the optimization functor to copy into this
*/
inline OptimizationFunctor&
operator=(const OptimizationFunctor& src)
{
Functor<MatScalar>::operator=(src);
estimator_ = src.estimator_;
return (*this);
}
/** \brief Destructor. */
~OptimizationFunctor() {}
/** Fill fvec from x. For the current state vector x fill the f values
* \param[in] x state vector
* \param[out] fvec f values vector
*/
int
operator()(const VectorX& x, VectorX& fvec) const;
const TransformationEstimationLM<PointSource, PointTarget, MatScalar>* estimator_;
};
struct OptimizationFunctorWithIndices : public Functor<MatScalar> {
using Functor<MatScalar>::values;
/** Functor constructor
* \param[in] m_data_points the number of data points to evaluate
* \param[in,out] estimator pointer to the estimator object
*/
OptimizationFunctorWithIndices(int m_data_points,
const TransformationEstimationLM* estimator)
: Functor<MatScalar>(m_data_points), estimator_(estimator)
{}
/** Copy constructor
* \param[in] src the optimization functor to copy into this
*/
inline OptimizationFunctorWithIndices(const OptimizationFunctorWithIndices& src)
: Functor<MatScalar>(src.m_data_points_), estimator_()
{
*this = src;
}
/** Copy operator
* \param[in] src the optimization functor to copy into this
*/
inline OptimizationFunctorWithIndices&
operator=(const OptimizationFunctorWithIndices& src)
{
Functor<MatScalar>::operator=(src);
estimator_ = src.estimator_;
return (*this);
}
/** \brief Destructor. */
~OptimizationFunctorWithIndices() {}
/** Fill fvec from x. For the current state vector x fill the f values
* \param[in] x state vector
* \param[out] fvec f values vector
*/
int
operator()(const VectorX& x, VectorX& fvec) const;
const TransformationEstimationLM<PointSource, PointTarget, MatScalar>* estimator_;
};
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
} // namespace registration
} // namespace pcl
#include <pcl/registration/impl/transformation_estimation_lm.hpp>