343 lines
14 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2009-2012, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef PCL_REGISTRATION_IMPL_JOINT_ICP_HPP_
#define PCL_REGISTRATION_IMPL_JOINT_ICP_HPP_
#include <pcl/console/print.h>
#include <pcl/correspondence.h>
namespace pcl {
template <typename PointSource, typename PointTarget, typename Scalar>
void
JointIterativeClosestPoint<PointSource, PointTarget, Scalar>::computeTransformation(
PointCloudSource& output, const Matrix4& guess)
{
// Point clouds containing the correspondences of each point in <input, indices>
if (sources_.size() != targets_.size() || sources_.empty() || targets_.empty()) {
PCL_ERROR("[pcl::%s::computeTransformation] Must set InputSources and InputTargets "
"to the same, nonzero size!\n",
getClassName().c_str());
return;
}
bool manual_correspondence_estimations_set = true;
if (correspondence_estimations_.empty()) {
manual_correspondence_estimations_set = false;
correspondence_estimations_.resize(sources_.size());
for (std::size_t i = 0; i < sources_.size(); i++) {
correspondence_estimations_[i] = correspondence_estimation_->clone();
KdTreeReciprocalPtr src_tree(new KdTreeReciprocal);
KdTreePtr tgt_tree(new KdTree);
correspondence_estimations_[i]->setSearchMethodTarget(tgt_tree);
correspondence_estimations_[i]->setSearchMethodSource(src_tree);
}
}
if (correspondence_estimations_.size() != sources_.size()) {
PCL_ERROR("[pcl::%s::computeTransform] Must set CorrespondenceEstimations to be "
"the same size as the joint\n",
getClassName().c_str());
return;
}
std::vector<PointCloudSourcePtr> inputs_transformed(sources_.size());
for (std::size_t i = 0; i < sources_.size(); i++) {
inputs_transformed[i].reset(new PointCloudSource);
}
nr_iterations_ = 0;
converged_ = false;
// Initialise final transformation to the guessed one
final_transformation_ = guess;
// Make a combined transformed input and output
std::vector<std::size_t> input_offsets(sources_.size());
std::vector<std::size_t> target_offsets(targets_.size());
PointCloudSourcePtr sources_combined(new PointCloudSource);
PointCloudSourcePtr inputs_transformed_combined(new PointCloudSource);
PointCloudTargetPtr targets_combined(new PointCloudTarget);
std::size_t input_offset = 0;
std::size_t target_offset = 0;
for (std::size_t i = 0; i < sources_.size(); i++) {
// If the guessed transformation is non identity
if (guess != Matrix4::Identity()) {
// Apply guessed transformation prior to search for neighbours
this->transformCloud(*sources_[i], *inputs_transformed[i], guess);
}
else {
*inputs_transformed[i] = *sources_[i];
}
*sources_combined += *sources_[i];
*inputs_transformed_combined += *inputs_transformed[i];
*targets_combined += *targets_[i];
input_offsets[i] = input_offset;
target_offsets[i] = target_offset;
input_offset += inputs_transformed[i]->size();
target_offset += targets_[i]->size();
}
transformation_ = Matrix4::Identity();
// Make blobs if necessary
determineRequiredBlobData();
// Pass in the default target for the Correspondence Estimation/Rejection code
for (std::size_t i = 0; i < sources_.size(); i++) {
correspondence_estimations_[i]->setInputTarget(targets_[i]);
if (correspondence_estimations_[i]->requiresTargetNormals()) {
PCLPointCloud2::Ptr target_blob(new PCLPointCloud2);
pcl::toPCLPointCloud2(*targets_[i], *target_blob);
correspondence_estimations_[i]->setTargetNormals(target_blob);
}
}
PCLPointCloud2::Ptr targets_combined_blob(new PCLPointCloud2);
if (!correspondence_rejectors_.empty() && need_target_blob_)
pcl::toPCLPointCloud2(*targets_combined, *targets_combined_blob);
for (std::size_t i = 0; i < correspondence_rejectors_.size(); ++i) {
registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
if (rej->requiresTargetPoints())
rej->setTargetPoints(targets_combined_blob);
if (rej->requiresTargetNormals() && target_has_normals_)
rej->setTargetNormals(targets_combined_blob);
}
convergence_criteria_->setMaximumIterations(max_iterations_);
convergence_criteria_->setRelativeMSE(euclidean_fitness_epsilon_);
convergence_criteria_->setTranslationThreshold(transformation_epsilon_);
convergence_criteria_->setRotationThreshold(1.0 - transformation_epsilon_);
// Repeat until convergence
std::vector<CorrespondencesPtr> partial_correspondences_(sources_.size());
for (std::size_t i = 0; i < sources_.size(); i++) {
partial_correspondences_[i].reset(new pcl::Correspondences);
}
do {
// Save the previously estimated transformation
previous_transformation_ = transformation_;
// Set the source each iteration, to ensure the dirty flag is updated
correspondences_->clear();
for (std::size_t i = 0; i < correspondence_estimations_.size(); i++) {
correspondence_estimations_[i]->setInputSource(inputs_transformed[i]);
// Get blob data if needed
if (correspondence_estimations_[i]->requiresSourceNormals()) {
PCLPointCloud2::Ptr input_transformed_blob(new PCLPointCloud2);
toPCLPointCloud2(*inputs_transformed[i], *input_transformed_blob);
correspondence_estimations_[i]->setSourceNormals(input_transformed_blob);
}
// Estimate correspondences on each cloud pair separately
if (use_reciprocal_correspondence_) {
correspondence_estimations_[i]->determineReciprocalCorrespondences(
*partial_correspondences_[i], corr_dist_threshold_);
}
else {
correspondence_estimations_[i]->determineCorrespondences(
*partial_correspondences_[i], corr_dist_threshold_);
}
PCL_DEBUG("[pcl::%s::computeTransformation] Found %d partial correspondences for "
"cloud [%d]\n",
getClassName().c_str(),
partial_correspondences_[i]->size(),
i);
for (std::size_t j = 0; j < partial_correspondences_[i]->size(); j++) {
pcl::Correspondence corr = partial_correspondences_[i]->at(j);
// Update the offsets to be for the combined clouds
corr.index_query += input_offsets[i];
corr.index_match += target_offsets[i];
correspondences_->push_back(corr);
}
}
PCL_DEBUG("[pcl::%s::computeTransformation] Total correspondences: %d\n",
getClassName().c_str(),
correspondences_->size());
PCLPointCloud2::Ptr inputs_transformed_combined_blob;
if (need_source_blob_) {
inputs_transformed_combined_blob.reset(new PCLPointCloud2);
toPCLPointCloud2(*inputs_transformed_combined, *inputs_transformed_combined_blob);
}
CorrespondencesPtr temp_correspondences(new Correspondences(*correspondences_));
for (std::size_t i = 0; i < correspondence_rejectors_.size(); ++i) {
PCL_DEBUG("Applying a correspondence rejector method: %s.\n",
correspondence_rejectors_[i]->getClassName().c_str());
registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
PCL_DEBUG("Applying a correspondence rejector method: %s.\n",
rej->getClassName().c_str());
if (rej->requiresSourcePoints())
rej->setSourcePoints(inputs_transformed_combined_blob);
if (rej->requiresSourceNormals() && source_has_normals_)
rej->setSourceNormals(inputs_transformed_combined_blob);
rej->setInputCorrespondences(temp_correspondences);
rej->getCorrespondences(*correspondences_);
// Modify input for the next iteration
if (i < correspondence_rejectors_.size() - 1)
*temp_correspondences = *correspondences_;
}
int cnt = correspondences_->size();
// Check whether we have enough correspondences
if (cnt < min_number_correspondences_) {
PCL_ERROR("[pcl::%s::computeTransformation] Not enough correspondences found. "
"Relax your threshold parameters.\n",
getClassName().c_str());
convergence_criteria_->setConvergenceState(
pcl::registration::DefaultConvergenceCriteria<
Scalar>::CONVERGENCE_CRITERIA_NO_CORRESPONDENCES);
converged_ = false;
break;
}
// Estimate the transform jointly, on a combined correspondence set
transformation_estimation_->estimateRigidTransformation(
*inputs_transformed_combined,
*targets_combined,
*correspondences_,
transformation_);
// Transform the combined data
this->transformCloud(
*inputs_transformed_combined, *inputs_transformed_combined, transformation_);
// And all its components
for (std::size_t i = 0; i < sources_.size(); i++) {
this->transformCloud(
*inputs_transformed[i], *inputs_transformed[i], transformation_);
}
// Obtain the final transformation
final_transformation_ = transformation_ * final_transformation_;
++nr_iterations_;
// Update the vizualization of icp convergence
// if (update_visualizer_ != 0)
// update_visualizer_(output, source_indices_good, *target_, target_indices_good );
converged_ = static_cast<bool>((*convergence_criteria_));
} while (!converged_);
PCL_DEBUG("Transformation "
"is:\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%5f\t%5f\t%5f\t%5f\n\t%"
"5f\t%5f\t%5f\t%5f\n",
final_transformation_(0, 0),
final_transformation_(0, 1),
final_transformation_(0, 2),
final_transformation_(0, 3),
final_transformation_(1, 0),
final_transformation_(1, 1),
final_transformation_(1, 2),
final_transformation_(1, 3),
final_transformation_(2, 0),
final_transformation_(2, 1),
final_transformation_(2, 2),
final_transformation_(2, 3),
final_transformation_(3, 0),
final_transformation_(3, 1),
final_transformation_(3, 2),
final_transformation_(3, 3));
// For fitness checks, etc, we'll use an aggregated cloud for now (should be
// evaluating independently for correctness, but this requires propagating a few
// virtual methods from Registration)
IterativeClosestPoint<PointSource, PointTarget, Scalar>::setInputSource(
sources_combined);
IterativeClosestPoint<PointSource, PointTarget, Scalar>::setInputTarget(
targets_combined);
// If we automatically set the correspondence estimators, we should clear them now
if (!manual_correspondence_estimations_set) {
correspondence_estimations_.clear();
}
// By definition, this method will return an empty cloud (for compliance with the ICP
// API). We can figure out a better solution, if necessary.
output = PointCloudSource();
}
template <typename PointSource, typename PointTarget, typename Scalar>
void
JointIterativeClosestPoint<PointSource, PointTarget, Scalar>::
determineRequiredBlobData()
{
need_source_blob_ = false;
need_target_blob_ = false;
// Check estimators
for (std::size_t i = 0; i < correspondence_estimations_.size(); i++) {
CorrespondenceEstimationPtr& ce = correspondence_estimations_[i];
need_source_blob_ |= ce->requiresSourceNormals();
need_target_blob_ |= ce->requiresTargetNormals();
// Add warnings if necessary
if (ce->requiresSourceNormals() && !source_has_normals_) {
PCL_WARN("[pcl::%s::determineRequiredBlobData] Estimator expects source normals, "
"but we can't provide them.\n",
getClassName().c_str());
}
if (ce->requiresTargetNormals() && !target_has_normals_) {
PCL_WARN("[pcl::%s::determineRequiredBlobData] Estimator expects target normals, "
"but we can't provide them.\n",
getClassName().c_str());
}
}
// Check rejectors
for (std::size_t i = 0; i < correspondence_rejectors_.size(); i++) {
registration::CorrespondenceRejector::Ptr& rej = correspondence_rejectors_[i];
need_source_blob_ |= rej->requiresSourcePoints();
need_source_blob_ |= rej->requiresSourceNormals();
need_target_blob_ |= rej->requiresTargetPoints();
need_target_blob_ |= rej->requiresTargetNormals();
if (rej->requiresSourceNormals() && !source_has_normals_) {
PCL_WARN("[pcl::%s::determineRequiredBlobData] Rejector %s expects source "
"normals, but we can't provide them.\n",
getClassName().c_str(),
rej->getClassName().c_str());
}
if (rej->requiresTargetNormals() && !target_has_normals_) {
PCL_WARN("[pcl::%s::determineRequiredBlobData] Rejector %s expects target "
"normals, but we can't provide them.\n",
getClassName().c_str(),
rej->getClassName().c_str());
}
}
}
} // namespace pcl
#endif /* PCL_REGISTRATION_IMPL_JOINT_ICP_HPP_ */