983 lines
36 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef PCL_RECOGNITION_LINEMOD_LINE_RGBD_IMPL_HPP_
#define PCL_RECOGNITION_LINEMOD_LINE_RGBD_IMPL_HPP_
//#include <pcl/recognition/linemod/line_rgbd.h>
#include <pcl/io/pcd_io.h>
#include <fcntl.h>
#include <pcl/point_cloud.h>
#include <limits>
namespace pcl
{
template <typename PointXYZT, typename PointRGBT> bool
LineRGBD<PointXYZT, PointRGBT>::readLTMHeader (int fd, pcl::io::TARHeader &header)
{
// Read in the header
int result = static_cast<int> (io::raw_read (fd, reinterpret_cast<char*> (&header.file_name[0]), 512));
if (result == -1)
return (false);
// We only support regular files for now.
// Additional file types in TAR include: hard links, symbolic links, device/special files, block devices,
// directories, and named pipes.
if (header.file_type[0] != '0' && header.file_type[0] != '\0')
return (false);
// We only support USTAR version 0 files for now
if (std::string (header.ustar).substr (0, 5) != "ustar")
return (false);
if (header.getFileSize () == 0)
return (false);
return (true);
}
template <typename PointXYZT, typename PointRGBT> bool
LineRGBD<PointXYZT, PointRGBT>::loadTemplates (const std::string &file_name, const std::size_t object_id)
{
// Open the file
int ltm_fd = io::raw_open(file_name.c_str (), O_RDONLY);
if (ltm_fd == -1)
return (false);
int ltm_offset = 0;
pcl::io::TARHeader ltm_header;
PCDReader pcd_reader;
std::string pcd_ext (".pcd");
std::string sqmmt_ext (".sqmmt");
// While there still is an LTM header to be read
while (readLTMHeader (ltm_fd, ltm_header))
{
ltm_offset += 512;
// Search for extension
std::string chunk_name (ltm_header.file_name);
std::transform (chunk_name.begin (), chunk_name.end (), chunk_name.begin (), ::tolower);
std::string::size_type it;
if ((it = chunk_name.find (pcd_ext)) != std::string::npos &&
(pcd_ext.size () - (chunk_name.size () - it)) == 0)
{
PCL_DEBUG ("[pcl::LineRGBD::loadTemplates] Reading and parsing %s as a PCD file.\n", chunk_name.c_str ());
// Read the next PCD file
template_point_clouds_.resize (template_point_clouds_.size () + 1);
pcd_reader.read (file_name, template_point_clouds_[template_point_clouds_.size () - 1], ltm_offset);
// Increment the offset for the next file
ltm_offset += (ltm_header.getFileSize ()) + (512 - ltm_header.getFileSize () % 512);
}
else if ((it = chunk_name.find (sqmmt_ext)) != std::string::npos &&
(sqmmt_ext.size () - (chunk_name.size () - it)) == 0)
{
PCL_DEBUG ("[pcl::LineRGBD::loadTemplates] Reading and parsing %s as a SQMMT file.\n", chunk_name.c_str ());
unsigned int fsize = ltm_header.getFileSize ();
char *buffer = new char[fsize];
int result = static_cast<int> (io::raw_read (ltm_fd, reinterpret_cast<char*> (&buffer[0]), fsize));
if (result == -1)
{
delete [] buffer;
PCL_ERROR ("[pcl::LineRGBD::loadTemplates] Error reading SQMMT template from file!\n");
break;
}
// Read a SQMMT file
std::stringstream stream (std::stringstream::in | std::stringstream::out | std::stringstream::binary);
stream.write (buffer, fsize);
SparseQuantizedMultiModTemplate sqmmt;
sqmmt.deserialize (stream);
linemod_.addTemplate (sqmmt);
object_ids_.push_back (object_id);
// Increment the offset for the next file
ltm_offset += (ltm_header.getFileSize ()) + (512 - ltm_header.getFileSize () % 512);
delete [] buffer;
}
if (io::raw_lseek(ltm_fd, ltm_offset, SEEK_SET) < 0)
break;
}
// Close the file
io::raw_close(ltm_fd);
// Compute 3D bounding boxes from the template point clouds
bounding_boxes_.resize (template_point_clouds_.size ());
for (std::size_t i = 0; i < template_point_clouds_.size (); ++i)
{
PointCloud<PointXYZRGBA> & template_point_cloud = template_point_clouds_[i];
BoundingBoxXYZ & bb = bounding_boxes_[i];
bb.x = bb.y = bb.z = std::numeric_limits<float>::max ();
bb.width = bb.height = bb.depth = 0.0f;
float center_x = 0.0f;
float center_y = 0.0f;
float center_z = 0.0f;
float min_x = std::numeric_limits<float>::max ();
float min_y = std::numeric_limits<float>::max ();
float min_z = std::numeric_limits<float>::max ();
float max_x = -std::numeric_limits<float>::max ();
float max_y = -std::numeric_limits<float>::max ();
float max_z = -std::numeric_limits<float>::max ();
std::size_t counter = 0;
for (std::size_t j = 0; j < template_point_cloud.size (); ++j)
{
const PointXYZRGBA & p = template_point_cloud[j];
if (!std::isfinite (p.x) || !std::isfinite (p.y) || !std::isfinite (p.z))
continue;
min_x = std::min (min_x, p.x);
min_y = std::min (min_y, p.y);
min_z = std::min (min_z, p.z);
max_x = std::max (max_x, p.x);
max_y = std::max (max_y, p.y);
max_z = std::max (max_z, p.z);
center_x += p.x;
center_y += p.y;
center_z += p.z;
++counter;
}
center_x /= static_cast<float> (counter);
center_y /= static_cast<float> (counter);
center_z /= static_cast<float> (counter);
bb.width = max_x - min_x;
bb.height = max_y - min_y;
bb.depth = max_z - min_z;
bb.x = (min_x + bb.width / 2.0f) - center_x - bb.width / 2.0f;
bb.y = (min_y + bb.height / 2.0f) - center_y - bb.height / 2.0f;
bb.z = (min_z + bb.depth / 2.0f) - center_z - bb.depth / 2.0f;
for (std::size_t j = 0; j < template_point_cloud.size (); ++j)
{
PointXYZRGBA p = template_point_cloud[j];
if (!std::isfinite (p.x) || !std::isfinite (p.y) || !std::isfinite (p.z))
continue;
p.x -= center_x;
p.y -= center_y;
p.z -= center_z;
template_point_cloud[j] = p;
}
}
return (true);
}
template <typename PointXYZT, typename PointRGBT> int
LineRGBD<PointXYZT, PointRGBT>::createAndAddTemplate (
pcl::PointCloud<pcl::PointXYZRGBA> & cloud,
const std::size_t object_id,
const MaskMap & mask_xyz,
const MaskMap & mask_rgb,
const RegionXY & region)
{
// add point cloud
template_point_clouds_.resize (template_point_clouds_.size () + 1);
pcl::copyPointCloud (cloud, template_point_clouds_[template_point_clouds_.size () - 1]);
// add template
object_ids_.push_back (object_id);
// Compute 3D bounding boxes from the template point clouds
bounding_boxes_.resize (template_point_clouds_.size ());
{
const std::size_t i = template_point_clouds_.size () - 1;
PointCloud<PointXYZRGBA> & template_point_cloud = template_point_clouds_[i];
BoundingBoxXYZ & bb = bounding_boxes_[i];
bb.x = bb.y = bb.z = std::numeric_limits<float>::max ();
bb.width = bb.height = bb.depth = 0.0f;
float center_x = 0.0f;
float center_y = 0.0f;
float center_z = 0.0f;
float min_x = std::numeric_limits<float>::max ();
float min_y = std::numeric_limits<float>::max ();
float min_z = std::numeric_limits<float>::max ();
float max_x = -std::numeric_limits<float>::max ();
float max_y = -std::numeric_limits<float>::max ();
float max_z = -std::numeric_limits<float>::max ();
std::size_t counter = 0;
for (std::size_t j = 0; j < template_point_cloud.size (); ++j)
{
const PointXYZRGBA & p = template_point_cloud[j];
if (!std::isfinite (p.x) || !std::isfinite (p.y) || !std::isfinite (p.z))
continue;
min_x = std::min (min_x, p.x);
min_y = std::min (min_y, p.y);
min_z = std::min (min_z, p.z);
max_x = std::max (max_x, p.x);
max_y = std::max (max_y, p.y);
max_z = std::max (max_z, p.z);
center_x += p.x;
center_y += p.y;
center_z += p.z;
++counter;
}
center_x /= static_cast<float> (counter);
center_y /= static_cast<float> (counter);
center_z /= static_cast<float> (counter);
bb.width = max_x - min_x;
bb.height = max_y - min_y;
bb.depth = max_z - min_z;
bb.x = (min_x + bb.width / 2.0f) - center_x - bb.width / 2.0f;
bb.y = (min_y + bb.height / 2.0f) - center_y - bb.height / 2.0f;
bb.z = (min_z + bb.depth / 2.0f) - center_z - bb.depth / 2.0f;
for (std::size_t j = 0; j < template_point_cloud.size (); ++j)
{
PointXYZRGBA p = template_point_cloud[j];
if (!std::isfinite (p.x) || !std::isfinite (p.y) || !std::isfinite (p.z))
continue;
p.x -= center_x;
p.y -= center_y;
p.z -= center_z;
template_point_cloud[j] = p;
}
}
std::vector<pcl::QuantizableModality*> modalities;
modalities.push_back (&color_gradient_mod_);
modalities.push_back (&surface_normal_mod_);
std::vector<MaskMap*> masks;
masks.push_back (const_cast<MaskMap*> (&mask_rgb));
masks.push_back (const_cast<MaskMap*> (&mask_xyz));
return (linemod_.createAndAddTemplate (modalities, masks, region));
}
template <typename PointXYZT, typename PointRGBT> bool
LineRGBD<PointXYZT, PointRGBT>::addTemplate (const SparseQuantizedMultiModTemplate & sqmmt, pcl::PointCloud<pcl::PointXYZRGBA> & cloud, std::size_t object_id)
{
// add point cloud
template_point_clouds_.resize (template_point_clouds_.size () + 1);
pcl::copyPointCloud (cloud, template_point_clouds_[template_point_clouds_.size () - 1]);
// add template
linemod_.addTemplate (sqmmt);
object_ids_.push_back (object_id);
// Compute 3D bounding boxes from the template point clouds
bounding_boxes_.resize (template_point_clouds_.size ());
{
const std::size_t i = template_point_clouds_.size () - 1;
PointCloud<PointXYZRGBA> & template_point_cloud = template_point_clouds_[i];
BoundingBoxXYZ & bb = bounding_boxes_[i];
bb.x = bb.y = bb.z = std::numeric_limits<float>::max ();
bb.width = bb.height = bb.depth = 0.0f;
float center_x = 0.0f;
float center_y = 0.0f;
float center_z = 0.0f;
float min_x = std::numeric_limits<float>::max ();
float min_y = std::numeric_limits<float>::max ();
float min_z = std::numeric_limits<float>::max ();
float max_x = -std::numeric_limits<float>::max ();
float max_y = -std::numeric_limits<float>::max ();
float max_z = -std::numeric_limits<float>::max ();
std::size_t counter = 0;
for (std::size_t j = 0; j < template_point_cloud.size (); ++j)
{
const PointXYZRGBA & p = template_point_cloud[j];
if (!std::isfinite (p.x) || !std::isfinite (p.y) || !std::isfinite (p.z))
continue;
min_x = std::min (min_x, p.x);
min_y = std::min (min_y, p.y);
min_z = std::min (min_z, p.z);
max_x = std::max (max_x, p.x);
max_y = std::max (max_y, p.y);
max_z = std::max (max_z, p.z);
center_x += p.x;
center_y += p.y;
center_z += p.z;
++counter;
}
center_x /= static_cast<float> (counter);
center_y /= static_cast<float> (counter);
center_z /= static_cast<float> (counter);
bb.width = max_x - min_x;
bb.height = max_y - min_y;
bb.depth = max_z - min_z;
bb.x = (min_x + bb.width / 2.0f) - center_x - bb.width / 2.0f;
bb.y = (min_y + bb.height / 2.0f) - center_y - bb.height / 2.0f;
bb.z = (min_z + bb.depth / 2.0f) - center_z - bb.depth / 2.0f;
for (std::size_t j = 0; j < template_point_cloud.size (); ++j)
{
PointXYZRGBA p = template_point_cloud[j];
if (!std::isfinite (p.x) || !std::isfinite (p.y) || !std::isfinite (p.z))
continue;
p.x -= center_x;
p.y -= center_y;
p.z -= center_z;
template_point_cloud[j] = p;
}
}
return (true);
}
template <typename PointXYZT, typename PointRGBT> void
LineRGBD<PointXYZT, PointRGBT>::detect (
std::vector<typename pcl::LineRGBD<PointXYZT, PointRGBT>::Detection> & detections)
{
std::vector<pcl::QuantizableModality*> modalities;
modalities.push_back (&color_gradient_mod_);
modalities.push_back (&surface_normal_mod_);
std::vector<pcl::LINEMODDetection> linemod_detections;
linemod_.detectTemplates (modalities, linemod_detections);
detections_.clear ();
detections_.reserve (linemod_detections.size ());
detections.clear ();
detections.reserve (linemod_detections.size ());
for (std::size_t detection_id = 0; detection_id < linemod_detections.size (); ++detection_id)
{
pcl::LINEMODDetection & linemod_detection = linemod_detections[detection_id];
typename pcl::LineRGBD<PointXYZT, PointRGBT>::Detection detection;
detection.template_id = linemod_detection.template_id;
detection.object_id = object_ids_[linemod_detection.template_id];
detection.detection_id = detection_id;
detection.response = linemod_detection.score;
// compute bounding box:
// we assume that the bounding boxes of the templates are relative to the center of mass
// of the template points; so we also compute the center of mass of the points
// covered by the
const pcl::SparseQuantizedMultiModTemplate & linemod_template =
linemod_.getTemplate (linemod_detection.template_id);
const std::size_t start_x = std::max (linemod_detection.x, 0);
const std::size_t start_y = std::max (linemod_detection.y, 0);
const std::size_t end_x = std::min (static_cast<std::size_t> (start_x + linemod_template.region.width),
static_cast<std::size_t> (cloud_xyz_->width));
const std::size_t end_y = std::min (static_cast<std::size_t> (start_y + linemod_template.region.height),
static_cast<std::size_t> (cloud_xyz_->height));
detection.region.x = linemod_detection.x;
detection.region.y = linemod_detection.y;
detection.region.width = linemod_template.region.width;
detection.region.height = linemod_template.region.height;
//std::cerr << "detection region: " << linemod_detection.x << ", "
// << linemod_detection.y << ", "
// << linemod_template.region.width << ", "
// << linemod_template.region.height << std::endl;
float center_x = 0.0f;
float center_y = 0.0f;
float center_z = 0.0f;
std::size_t counter = 0;
for (std::size_t row_index = start_y; row_index < end_y; ++row_index)
{
for (std::size_t col_index = start_x; col_index < end_x; ++col_index)
{
const PointXYZT & point = (*cloud_xyz_) (col_index, row_index);
if (std::isfinite (point.x) && std::isfinite (point.y) && std::isfinite (point.z))
{
center_x += point.x;
center_y += point.y;
center_z += point.z;
++counter;
}
}
}
const float inv_counter = 1.0f / static_cast<float> (counter);
center_x *= inv_counter;
center_y *= inv_counter;
center_z *= inv_counter;
pcl::BoundingBoxXYZ template_bounding_box = bounding_boxes_[detection.template_id];
detection.bounding_box = template_bounding_box;
detection.bounding_box.x += center_x;
detection.bounding_box.y += center_y;
detection.bounding_box.z += center_z;
detections_.push_back (detection);
}
// refine detections along depth
refineDetectionsAlongDepth ();
//applyprojectivedepthicpondetections();
// remove overlaps
removeOverlappingDetections ();
for (std::size_t detection_index = 0; detection_index < detections_.size (); ++detection_index)
{
detections.push_back (detections_[detection_index]);
}
}
template <typename PointXYZT, typename PointRGBT> void
LineRGBD<PointXYZT, PointRGBT>::detectSemiScaleInvariant (
std::vector<typename pcl::LineRGBD<PointXYZT, PointRGBT>::Detection> & detections,
const float min_scale,
const float max_scale,
const float scale_multiplier)
{
std::vector<pcl::QuantizableModality*> modalities;
modalities.push_back (&color_gradient_mod_);
modalities.push_back (&surface_normal_mod_);
std::vector<pcl::LINEMODDetection> linemod_detections;
linemod_.detectTemplatesSemiScaleInvariant (modalities, linemod_detections, min_scale, max_scale, scale_multiplier);
detections_.clear ();
detections_.reserve (linemod_detections.size ());
detections.clear ();
detections.reserve (linemod_detections.size ());
for (std::size_t detection_id = 0; detection_id < linemod_detections.size (); ++detection_id)
{
pcl::LINEMODDetection & linemod_detection = linemod_detections[detection_id];
typename pcl::LineRGBD<PointXYZT, PointRGBT>::Detection detection;
detection.template_id = linemod_detection.template_id;
detection.object_id = object_ids_[linemod_detection.template_id];
detection.detection_id = detection_id;
detection.response = linemod_detection.score;
// compute bounding box:
// we assume that the bounding boxes of the templates are relative to the center of mass
// of the template points; so we also compute the center of mass of the points
// covered by the
const pcl::SparseQuantizedMultiModTemplate & linemod_template =
linemod_.getTemplate (linemod_detection.template_id);
const std::size_t start_x = std::max (linemod_detection.x, 0);
const std::size_t start_y = std::max (linemod_detection.y, 0);
const std::size_t end_x = std::min (static_cast<std::size_t> (start_x + linemod_template.region.width * linemod_detection.scale),
static_cast<std::size_t> (cloud_xyz_->width));
const std::size_t end_y = std::min (static_cast<std::size_t> (start_y + linemod_template.region.height * linemod_detection.scale),
static_cast<std::size_t> (cloud_xyz_->height));
detection.region.x = linemod_detection.x;
detection.region.y = linemod_detection.y;
detection.region.width = linemod_template.region.width * linemod_detection.scale;
detection.region.height = linemod_template.region.height * linemod_detection.scale;
//std::cerr << "detection region: " << linemod_detection.x << ", "
// << linemod_detection.y << ", "
// << linemod_template.region.width << ", "
// << linemod_template.region.height << std::endl;
float center_x = 0.0f;
float center_y = 0.0f;
float center_z = 0.0f;
std::size_t counter = 0;
for (std::size_t row_index = start_y; row_index < end_y; ++row_index)
{
for (std::size_t col_index = start_x; col_index < end_x; ++col_index)
{
const PointXYZT & point = (*cloud_xyz_) (col_index, row_index);
if (std::isfinite (point.x) && std::isfinite (point.y) && std::isfinite (point.z))
{
center_x += point.x;
center_y += point.y;
center_z += point.z;
++counter;
}
}
}
const float inv_counter = 1.0f / static_cast<float> (counter);
center_x *= inv_counter;
center_y *= inv_counter;
center_z *= inv_counter;
pcl::BoundingBoxXYZ template_bounding_box = bounding_boxes_[detection.template_id];
detection.bounding_box = template_bounding_box;
detection.bounding_box.x += center_x;
detection.bounding_box.y += center_y;
detection.bounding_box.z += center_z;
detections_.push_back (detection);
}
// refine detections along depth
//refineDetectionsAlongDepth ();
//applyProjectiveDepthICPOnDetections();
// remove overlaps
removeOverlappingDetections ();
for (std::size_t detection_index = 0; detection_index < detections_.size (); ++detection_index)
{
detections.push_back (detections_[detection_index]);
}
}
template <typename PointXYZT, typename PointRGBT> void
LineRGBD<PointXYZT, PointRGBT>::computeTransformedTemplatePoints (
const std::size_t detection_id, pcl::PointCloud<pcl::PointXYZRGBA> &cloud)
{
if (detection_id >= detections_.size ())
PCL_ERROR ("ERROR pcl::LineRGBD::computeTransformedTemplatePoints - detection_id is out of bounds\n");
const std::size_t template_id = detections_[detection_id].template_id;
const pcl::PointCloud<pcl::PointXYZRGBA> & template_point_cloud = template_point_clouds_[template_id];
const pcl::BoundingBoxXYZ & template_bounding_box = bounding_boxes_[template_id];
const pcl::BoundingBoxXYZ & detection_bounding_box = detections_[detection_id].bounding_box;
//std::cerr << "detection: "
// << detection_bounding_box.x << ", "
// << detection_bounding_box.y << ", "
// << detection_bounding_box.z << std::endl;
//std::cerr << "template: "
// << template_bounding_box.x << ", "
// << template_bounding_box.y << ", "
// << template_bounding_box.z << std::endl;
const float translation_x = detection_bounding_box.x - template_bounding_box.x;
const float translation_y = detection_bounding_box.y - template_bounding_box.y;
const float translation_z = detection_bounding_box.z - template_bounding_box.z;
//std::cerr << "translation: "
// << translation_x << ", "
// << translation_y << ", "
// << translation_z << std::endl;
const std::size_t nr_points = template_point_cloud.size ();
cloud.resize (nr_points);
cloud.width = template_point_cloud.width;
cloud.height = template_point_cloud.height;
for (std::size_t point_index = 0; point_index < nr_points; ++point_index)
{
pcl::PointXYZRGBA point = template_point_cloud[point_index];
point.x += translation_x;
point.y += translation_y;
point.z += translation_z;
cloud[point_index] = point;
}
}
template <typename PointXYZT, typename PointRGBT> void
LineRGBD<PointXYZT, PointRGBT>::refineDetectionsAlongDepth ()
{
const std::size_t nr_detections = detections_.size ();
for (std::size_t detection_index = 0; detection_index < nr_detections; ++detection_index)
{
typename LineRGBD<PointXYZT, PointRGBT>::Detection & detection = detections_[detection_index];
// find depth with most valid points
const std::size_t start_x = std::max (detection.region.x, 0);
const std::size_t start_y = std::max (detection.region.y, 0);
const std::size_t end_x = std::min (static_cast<std::size_t> (detection.region.x + detection.region.width),
static_cast<std::size_t> (cloud_xyz_->width));
const std::size_t end_y = std::min (static_cast<std::size_t> (detection.region.y + detection.region.height),
static_cast<std::size_t> (cloud_xyz_->height));
float min_depth = std::numeric_limits<float>::max ();
float max_depth = -std::numeric_limits<float>::max ();
for (std::size_t row_index = start_y; row_index < end_y; ++row_index)
{
for (std::size_t col_index = start_x; col_index < end_x; ++col_index)
{
const PointXYZT & point = (*cloud_xyz_) (col_index, row_index);
if (/*std::isfinite (point.x) && std::isfinite (point.y) && */std::isfinite (point.z))
{
min_depth = std::min (min_depth, point.z);
max_depth = std::max (max_depth, point.z);
}
}
}
const std::size_t nr_bins = 1000;
const float step_size = (max_depth - min_depth) / static_cast<float> (nr_bins-1);
std::vector<std::size_t> depth_bins (nr_bins, 0);
for (std::size_t row_index = start_y; row_index < end_y; ++row_index)
{
for (std::size_t col_index = start_x; col_index < end_x; ++col_index)
{
const PointXYZT & point = (*cloud_xyz_) (col_index, row_index);
if (/*std::isfinite (point.x) && std::isfinite (point.y) && */std::isfinite (point.z))
{
const std::size_t bin_index = static_cast<std::size_t> ((point.z - min_depth) / step_size);
++depth_bins[bin_index];
}
}
}
std::vector<std::size_t> integral_depth_bins (nr_bins, 0);
integral_depth_bins[0] = depth_bins[0];
for (std::size_t bin_index = 1; bin_index < nr_bins; ++bin_index)
{
integral_depth_bins[bin_index] = depth_bins[bin_index] + integral_depth_bins[bin_index-1];
}
const std::size_t bb_depth_range = static_cast<std::size_t> (detection.bounding_box.depth / step_size);
std::size_t max_nr_points = 0;
std::size_t max_index = 0;
for (std::size_t bin_index = 0; (bin_index+bb_depth_range) < nr_bins; ++bin_index)
{
const std::size_t nr_points_in_range = integral_depth_bins[bin_index+bb_depth_range] - integral_depth_bins[bin_index];
if (nr_points_in_range > max_nr_points)
{
max_nr_points = nr_points_in_range;
max_index = bin_index;
}
}
const float z = static_cast<float> (max_index) * step_size + min_depth;
detection.bounding_box.z = z;
}
}
template <typename PointXYZT, typename PointRGBT> void
LineRGBD<PointXYZT, PointRGBT>::applyProjectiveDepthICPOnDetections ()
{
const std::size_t nr_detections = detections_.size ();
for (std::size_t detection_index = 0; detection_index < nr_detections; ++detection_index)
{
typename pcl::LineRGBD<PointXYZT, PointRGBT>::Detection & detection = detections_[detection_index];
const std::size_t template_id = detection.template_id;
pcl::PointCloud<pcl::PointXYZRGBA> & point_cloud = template_point_clouds_[template_id];
const std::size_t start_x = detection.region.x;
const std::size_t start_y = detection.region.y;
const std::size_t pc_width = point_cloud.width;
const std::size_t pc_height = point_cloud.height;
std::vector<std::pair<float, float> > depth_matches;
for (std::size_t row_index = 0; row_index < pc_height; ++row_index)
{
for (std::size_t col_index = 0; col_index < pc_width; ++col_index)
{
const pcl::PointXYZRGBA & point_template = point_cloud (col_index, row_index);
const PointXYZT & point_input = (*cloud_xyz_) (col_index + start_x, row_index + start_y);
if (!std::isfinite (point_template.z) || !std::isfinite (point_input.z))
continue;
depth_matches.push_back (std::make_pair (point_template.z, point_input.z));
}
}
// apply ransac on matches
const std::size_t nr_matches = depth_matches.size ();
const std::size_t nr_iterations = 100; // todo: should be a parameter...
const float inlier_threshold = 0.01f; // 5cm // todo: should be a parameter...
std::size_t best_nr_inliers = 0;
float best_z_translation = 0.0f;
for (std::size_t iteration_index = 0; iteration_index < nr_iterations; ++iteration_index)
{
const std::size_t rand_index = (rand () * nr_matches) / RAND_MAX;
const float z_translation = depth_matches[rand_index].second - depth_matches[rand_index].first;
std::size_t nr_inliers = 0;
for (std::size_t match_index = 0; match_index < nr_matches; ++match_index)
{
const float error = std::abs (depth_matches[match_index].first + z_translation - depth_matches[match_index].second);
if (error <= inlier_threshold)
{
++nr_inliers;
}
}
if (nr_inliers > best_nr_inliers)
{
best_nr_inliers = nr_inliers;
best_z_translation = z_translation;
}
}
float average_depth = 0.0f;
std::size_t average_counter = 0;
for (std::size_t match_index = 0; match_index < nr_matches; ++match_index)
{
const float error = std::abs (depth_matches[match_index].first + best_z_translation - depth_matches[match_index].second);
if (error <= inlier_threshold)
{
//average_depth += depth_matches[match_index].second;
average_depth += depth_matches[match_index].second - depth_matches[match_index].first;
++average_counter;
}
}
average_depth /= static_cast<float> (average_counter);
detection.bounding_box.z = bounding_boxes_[template_id].z + average_depth;// - detection.bounding_box.depth/2.0f;
}
}
template <typename PointXYZT, typename PointRGBT> void
LineRGBD<PointXYZT, PointRGBT>::removeOverlappingDetections ()
{
// compute overlap between each detection
const std::size_t nr_detections = detections_.size ();
Eigen::MatrixXf overlaps (nr_detections, nr_detections);
for (std::size_t detection_index_1 = 0; detection_index_1 < nr_detections; ++detection_index_1)
{
for (std::size_t detection_index_2 = detection_index_1+1; detection_index_2 < nr_detections; ++detection_index_2)
{
const float bounding_box_volume = detections_[detection_index_1].bounding_box.width
* detections_[detection_index_1].bounding_box.height
* detections_[detection_index_1].bounding_box.depth;
if (detections_[detection_index_1].object_id != detections_[detection_index_2].object_id)
overlaps (detection_index_1, detection_index_2) = 0.0f;
else
overlaps (detection_index_1, detection_index_2) = computeBoundingBoxIntersectionVolume (
detections_[detection_index_1].bounding_box,
detections_[detection_index_2].bounding_box) / bounding_box_volume;
}
}
// create clusters of detections
std::vector<int> detection_to_cluster_mapping (nr_detections, -1);
std::vector<std::vector<std::size_t> > clusters;
for (std::size_t detection_index = 0; detection_index < nr_detections; ++detection_index)
{
if (detection_to_cluster_mapping[detection_index] != -1)
continue; // already part of a cluster
std::vector<std::size_t> cluster;
const std::size_t cluster_id = clusters.size ();
cluster.push_back (detection_index);
detection_to_cluster_mapping[detection_index] = static_cast<int> (cluster_id);
// check for detections which have sufficient overlap with a detection in the cluster
for (std::size_t cluster_index = 0; cluster_index < cluster.size (); ++cluster_index)
{
const std::size_t detection_index_1 = cluster[cluster_index];
for (std::size_t detection_index_2 = detection_index_1+1; detection_index_2 < nr_detections; ++detection_index_2)
{
if (detection_to_cluster_mapping[detection_index_2] != -1)
continue; // already part of a cluster
if (overlaps (detection_index_1, detection_index_2) < intersection_volume_threshold_)
continue; // not enough overlap
cluster.push_back (detection_index_2);
detection_to_cluster_mapping[detection_index_2] = static_cast<int> (cluster_id);
}
}
clusters.push_back (cluster);
}
// compute detection representatives for every cluster
std::vector<typename LineRGBD<PointXYZT, PointRGBT>::Detection> clustered_detections;
const std::size_t nr_clusters = clusters.size ();
for (std::size_t cluster_id = 0; cluster_id < nr_clusters; ++cluster_id)
{
std::vector<std::size_t> & cluster = clusters[cluster_id];
float average_center_x = 0.0f;
float average_center_y = 0.0f;
float average_center_z = 0.0f;
float weight_sum = 0.0f;
float best_response = 0.0f;
std::size_t best_detection_id = 0;
float average_region_x = 0.0f;
float average_region_y = 0.0f;
const std::size_t elements_in_cluster = cluster.size ();
for (std::size_t cluster_index = 0; cluster_index < elements_in_cluster; ++cluster_index)
{
const std::size_t detection_id = cluster[cluster_index];
const float weight = detections_[detection_id].response;
if (weight > best_response)
{
best_response = weight;
best_detection_id = detection_id;
}
const Detection & d = detections_[detection_id];
const float p_center_x = d.bounding_box.x + d.bounding_box.width / 2.0f;
const float p_center_y = d.bounding_box.y + d.bounding_box.height / 2.0f;
const float p_center_z = d.bounding_box.z + d.bounding_box.depth / 2.0f;
average_center_x += p_center_x * weight;
average_center_y += p_center_y * weight;
average_center_z += p_center_z * weight;
weight_sum += weight;
average_region_x += float (detections_[detection_id].region.x) * weight;
average_region_y += float (detections_[detection_id].region.y) * weight;
}
typename LineRGBD<PointXYZT, PointRGBT>::Detection detection;
detection.template_id = detections_[best_detection_id].template_id;
detection.object_id = detections_[best_detection_id].object_id;
detection.detection_id = cluster_id;
detection.response = best_response;
const float inv_weight_sum = 1.0f / weight_sum;
const float best_detection_bb_width = detections_[best_detection_id].bounding_box.width;
const float best_detection_bb_height = detections_[best_detection_id].bounding_box.height;
const float best_detection_bb_depth = detections_[best_detection_id].bounding_box.depth;
detection.bounding_box.x = average_center_x * inv_weight_sum - best_detection_bb_width/2.0f;
detection.bounding_box.y = average_center_y * inv_weight_sum - best_detection_bb_height/2.0f;
detection.bounding_box.z = average_center_z * inv_weight_sum - best_detection_bb_depth/2.0f;
detection.bounding_box.width = best_detection_bb_width;
detection.bounding_box.height = best_detection_bb_height;
detection.bounding_box.depth = best_detection_bb_depth;
detection.region.x = int (average_region_x * inv_weight_sum);
detection.region.y = int (average_region_y * inv_weight_sum);
detection.region.width = detections_[best_detection_id].region.width;
detection.region.height = detections_[best_detection_id].region.height;
clustered_detections.push_back (detection);
}
detections_ = clustered_detections;
}
template <typename PointXYZT, typename PointRGBT> float
LineRGBD<PointXYZT, PointRGBT>::computeBoundingBoxIntersectionVolume (
const BoundingBoxXYZ &box1, const BoundingBoxXYZ &box2)
{
const float x1_min = box1.x;
const float y1_min = box1.y;
const float z1_min = box1.z;
const float x1_max = box1.x + box1.width;
const float y1_max = box1.y + box1.height;
const float z1_max = box1.z + box1.depth;
const float x2_min = box2.x;
const float y2_min = box2.y;
const float z2_min = box2.z;
const float x2_max = box2.x + box2.width;
const float y2_max = box2.y + box2.height;
const float z2_max = box2.z + box2.depth;
const float xi_min = std::max (x1_min, x2_min);
const float yi_min = std::max (y1_min, y2_min);
const float zi_min = std::max (z1_min, z2_min);
const float xi_max = std::min (x1_max, x2_max);
const float yi_max = std::min (y1_max, y2_max);
const float zi_max = std::min (z1_max, z2_max);
const float intersection_width = xi_max - xi_min;
const float intersection_height = yi_max - yi_min;
const float intersection_depth = zi_max - zi_min;
if (intersection_width <= 0.0f || intersection_height <= 0.0f || intersection_depth <= 0.0f)
return 0.0f;
const float intersection_volume = intersection_width * intersection_height * intersection_depth;
return (intersection_volume);
}
} // namespace pcl
#endif // PCL_RECOGNITION_LINEMOD_LINE_RGBD_IMPL_HPP_