272 lines
9.3 KiB
C++

/*
* crh_recognition.h
*
* Created on: Mar 30, 2012
* Author: aitor
*/
#pragma once
#include <pcl/common/common.h>
#include <pcl/features/crh.h>
#include <pcl/common/fft/kiss_fftr.h>
#include <pcl/common/transforms.h>
namespace pcl
{
/** \brief CRHAlignment uses two Camera Roll Histograms (CRH) to find the
* roll rotation that aligns both views. See:
* - CAD-Model Recognition and 6 DOF Pose Estimation
* A. Aldoma, N. Blodow, D. Gossow, S. Gedikli, R.B. Rusu, M. Vincze and G. Bradski
* ICCV 2011, 3D Representation and Recognition (3dRR11) workshop
* Barcelona, Spain, (2011)
*
* \author Aitor Aldoma
* \ingroup recognition
*/
template<typename PointT, int nbins_>
class PCL_EXPORTS CRHAlignment
{
private:
/** \brief Sorts peaks */
struct peaks_ordering
{
bool
operator() (std::pair<float, int> const& a, std::pair<float, int> const& b)
{
return a.first > b.first;
}
};
using PointTPtr = typename pcl::PointCloud<PointT>::Ptr;
/** \brief View of the model to be aligned to input_view_ */
PointTPtr target_view_;
/** \brief View of the input */
PointTPtr input_view_;
/** \brief Centroid of the model_view_ */
Eigen::Vector3f centroid_target_;
/** \brief Centroid of the input_view_ */
Eigen::Vector3f centroid_input_;
/** \brief transforms from model view to input view */
std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > transforms_;
/** \brief Allowed maximum number of peaks */
int max_peaks_;
/** \brief Quantile of peaks after sorting to be checked */
float quantile_;
/** \brief Threshold for a peak to be accepted.
* If peak_i >= (max_peak * accept_threhsold_) => peak is accepted
*/
float accept_threshold_;
/** \brief computes the transformation to the z-axis
* \param[in] centroid
* \param[out] trasnformation to z-axis
*/
void
computeTransformToZAxes (Eigen::Vector3f & centroid, Eigen::Affine3f & transform)
{
Eigen::Vector3f plane_normal;
plane_normal[0] = -centroid[0];
plane_normal[1] = -centroid[1];
plane_normal[2] = -centroid[2];
Eigen::Vector3f z_vector = Eigen::Vector3f::UnitZ ();
plane_normal.normalize ();
Eigen::Vector3f axis = plane_normal.cross (z_vector);
double rotation = -asin (axis.norm ());
axis.normalize ();
transform = Eigen::Affine3f (Eigen::AngleAxisf (static_cast<float>(rotation), axis));
}
/** \brief computes the roll transformation
* \param[in] centroid input
* \param[in] centroid view
* \param[in] roll_angle
* \param[out] roll transformation
*/
void
computeRollTransform (Eigen::Vector3f & centroidInput, Eigen::Vector3f & centroidResult, double roll_angle, Eigen::Affine3f & final_trans)
{
Eigen::Affine3f transformInputToZ;
computeTransformToZAxes (centroidInput, transformInputToZ);
transformInputToZ = transformInputToZ.inverse ();
Eigen::Affine3f transformRoll (Eigen::AngleAxisf (-static_cast<float>(roll_angle * M_PI / 180), Eigen::Vector3f::UnitZ ()));
Eigen::Affine3f transformDBResultToZ;
computeTransformToZAxes (centroidResult, transformDBResultToZ);
final_trans = transformInputToZ * transformRoll * transformDBResultToZ;
}
public:
/** \brief Constructor. */
CRHAlignment() {
max_peaks_ = 5;
quantile_ = 0.2f;
accept_threshold_ = 0.8f;
}
/** \brief returns the computed transformations
* \param[out] transforms transformations
*/
void getTransforms(std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > & transforms) {
transforms = transforms_;
}
/** \brief sets model and input views
* \param[in] input_view
* \param[in] target_view
*/
void
setInputAndTargetView (PointTPtr & input_view, PointTPtr & target_view)
{
target_view_ = target_view;
input_view_ = input_view;
}
/** \brief sets model and input centroids
* \param[in] c1 model view centroid
* \param[in] c2 input view centroid
*/
void
setInputAndTargetCentroids (Eigen::Vector3f & c1, Eigen::Vector3f & c2)
{
centroid_target_ = c2;
centroid_input_ = c1;
}
/** \brief Computes the transformation aligning model to input
* \param[in] input_ftt CRH histogram of the input cloud
* \param[in] target_ftt CRH histogram of the target cloud
*/
void
align (pcl::PointCloud<pcl::Histogram<nbins_> > & input_ftt, pcl::PointCloud<pcl::Histogram<nbins_> > & target_ftt)
{
transforms_.clear(); //clear from last round...
std::vector<float> peaks;
computeRollAngle (input_ftt, target_ftt, peaks);
//if the number of peaks is too big, we should try to reduce using siluette matching
for (const float &peak : peaks)
{
Eigen::Affine3f rollToRot;
computeRollTransform (centroid_input_, centroid_target_, peak, rollToRot);
Eigen::Matrix4f rollHomMatrix = Eigen::Matrix4f ();
rollHomMatrix.setIdentity (4, 4);
rollHomMatrix = rollToRot.matrix ();
Eigen::Matrix4f translation2;
translation2.setIdentity (4, 4);
Eigen::Vector3f centr = rollToRot * centroid_target_;
translation2 (0, 3) = centroid_input_[0] - centr[0];
translation2 (1, 3) = centroid_input_[1] - centr[1];
translation2 (2, 3) = centroid_input_[2] - centr[2];
Eigen::Matrix4f resultHom (translation2 * rollHomMatrix);
transforms_.push_back(resultHom.inverse());
}
}
/** \brief Computes the roll angle that aligns input to model.
* \param[in] input_ftt CRH histogram of the input cloud
* \param[in] target_ftt CRH histogram of the target cloud
* \param[out] peaks Vector containing angles where the histograms correlate
*/
void
computeRollAngle (pcl::PointCloud<pcl::Histogram<nbins_> > & input_ftt, pcl::PointCloud<pcl::Histogram<nbins_> > & target_ftt,
std::vector<float> & peaks)
{
pcl::PointCloud<pcl::Histogram<nbins_> > input_ftt_negate (input_ftt);
for (int i = 2; i < (nbins_); i += 2)
input_ftt_negate[0].histogram[i] = -input_ftt_negate[0].histogram[i];
int nr_bins_after_padding = 180;
int peak_distance = 5;
int cutoff = nbins_ - 1;
kiss_fft_cpx * multAB = new kiss_fft_cpx[nr_bins_after_padding];
for (int i = 0; i < nr_bins_after_padding; i++)
multAB[i].r = multAB[i].i = 0.f;
int k = 0;
multAB[k].r = input_ftt_negate[0].histogram[0] * target_ftt[0].histogram[0];
k++;
float a, b, c, d;
for (int i = 1; i < cutoff; i += 2, k++)
{
a = input_ftt_negate[0].histogram[i];
b = input_ftt_negate[0].histogram[i + 1];
c = target_ftt[0].histogram[i];
d = target_ftt[0].histogram[i + 1];
multAB[k].r = a * c - b * d;
multAB[k].i = b * c + a * d;
float tmp = std::sqrt (multAB[k].r * multAB[k].r + multAB[k].i * multAB[k].i);
multAB[k].r /= tmp;
multAB[k].i /= tmp;
}
multAB[nbins_ - 1].r = input_ftt_negate[0].histogram[nbins_ - 1] * target_ftt[0].histogram[nbins_ - 1];
kiss_fft_cfg mycfg = kiss_fft_alloc (nr_bins_after_padding, 1, nullptr, nullptr);
kiss_fft_cpx * invAB = new kiss_fft_cpx[nr_bins_after_padding];
kiss_fft (mycfg, multAB, invAB);
std::vector < std::pair<float, int> > scored_peaks (nr_bins_after_padding);
for (int i = 0; i < nr_bins_after_padding; i++)
scored_peaks[i] = std::make_pair (invAB[i].r, i);
std::sort (scored_peaks.begin (), scored_peaks.end (), peaks_ordering ());
std::vector<int> peaks_indices;
std::vector<float> peaks_values;
// we look at the upper quantile_
float quantile = quantile_;
int max_inserted= max_peaks_;
int inserted=0;
bool stop=false;
for (int i = 0; (i < static_cast<int> (quantile * static_cast<float> (nr_bins_after_padding))) && !stop; i++)
{
if (scored_peaks[i].first >= scored_peaks[0].first * accept_threshold_)
{
bool insert = true;
for (const int &peaks_index : peaks_indices)
{ //check inserted peaks, first pick always inserted
if ((std::abs (peaks_index - scored_peaks[i].second) <= peak_distance) ||
(std::abs (peaks_index - (scored_peaks[i].second - nr_bins_after_padding)) <= peak_distance))
{
insert = false;
break;
}
}
if (insert)
{
peaks_indices.push_back (scored_peaks[i].second);
peaks_values.push_back (scored_peaks[i].first);
peaks.push_back (static_cast<float> (scored_peaks[i].second * (360 / nr_bins_after_padding)));
inserted++;
if(inserted >= max_inserted)
stop = true;
}
}
}
}
};
}