915 lines
38 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#pragma once
#ifdef __GNUC__
#pragma GCC system_header
#endif
#include <Eigen/StdVector>
#include <Eigen/Geometry>
#include <pcl/PCLHeader.h>
#include <pcl/exceptions.h>
#include <pcl/memory.h>
#include <pcl/pcl_macros.h>
#include <pcl/type_traits.h>
#include <pcl/types.h>
#include <pcl/console/print.h> // for PCL_WARN
#include <utility>
#include <vector>
namespace pcl
{
namespace detail
{
struct FieldMapping
{
std::size_t serialized_offset;
std::size_t struct_offset;
std::size_t size;
};
} // namespace detail
// Forward declarations
template <typename PointT> class PointCloud;
using MsgFieldMap = std::vector<detail::FieldMapping>;
/** \brief Helper functor structure for copying data between an Eigen type and a PointT. */
template <typename PointOutT>
struct NdCopyEigenPointFunctor
{
using Pod = typename traits::POD<PointOutT>::type;
/** \brief Constructor
* \param[in] p1 the input Eigen type
* \param[out] p2 the output Point type
*/
NdCopyEigenPointFunctor (const Eigen::VectorXf &p1, PointOutT &p2)
: p1_ (p1),
p2_ (reinterpret_cast<Pod&>(p2)),
f_idx_ (0) { }
/** \brief Operator. Data copy happens here. */
template<typename Key> inline void
operator() ()
{
//boost::fusion::at_key<Key> (p2_) = p1_[f_idx_++];
using T = typename pcl::traits::datatype<PointOutT, Key>::type;
std::uint8_t* data_ptr = reinterpret_cast<std::uint8_t*>(&p2_) + pcl::traits::offset<PointOutT, Key>::value;
*reinterpret_cast<T*>(data_ptr) = static_cast<T> (p1_[f_idx_++]);
}
private:
const Eigen::VectorXf &p1_;
Pod &p2_;
int f_idx_;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
/** \brief Helper functor structure for copying data between an Eigen type and a PointT. */
template <typename PointInT>
struct NdCopyPointEigenFunctor
{
using Pod = typename traits::POD<PointInT>::type;
/** \brief Constructor
* \param[in] p1 the input Point type
* \param[out] p2 the output Eigen type
*/
NdCopyPointEigenFunctor (const PointInT &p1, Eigen::VectorXf &p2)
: p1_ (reinterpret_cast<const Pod&>(p1)), p2_ (p2), f_idx_ (0) { }
/** \brief Operator. Data copy happens here. */
template<typename Key> inline void
operator() ()
{
//p2_[f_idx_++] = boost::fusion::at_key<Key> (p1_);
using T = typename pcl::traits::datatype<PointInT, Key>::type;
const std::uint8_t* data_ptr = reinterpret_cast<const std::uint8_t*>(&p1_) + pcl::traits::offset<PointInT, Key>::value;
p2_[f_idx_++] = static_cast<float> (*reinterpret_cast<const T*>(data_ptr));
}
private:
const Pod &p1_;
Eigen::VectorXf &p2_;
int f_idx_;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
/** \brief PointCloud represents the base class in PCL for storing collections of 3D points.
*
* The class is templated, which means you need to specify the type of data
* that it should contain. For example, to create a point cloud that holds 4
* random XYZ data points, use:
*
* \code
* pcl::PointCloud<pcl::PointXYZ> cloud;
* cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ()));
* cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ()));
* cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ()));
* cloud.push_back (pcl::PointXYZ (rand (), rand (), rand ()));
* \endcode
*
* The PointCloud class contains the following elements:
* - \b width - specifies the width of the point cloud dataset in the number of points. WIDTH has two meanings:
* - it can specify the total number of points in the cloud (equal with POINTS see below) for unorganized datasets;
* - it can specify the width (total number of points in a row) of an organized point cloud dataset.
* \a Mandatory.
* - \b height - specifies the height of the point cloud dataset in the number of points. HEIGHT has two meanings:
* - it can specify the height (total number of rows) of an organized point cloud dataset;
* - it is set to 1 for unorganized datasets (thus used to check whether a dataset is organized or not).
* \a Mandatory.
* - \b points - the data array where all points of type <b>PointT</b> are stored. \a Mandatory.
*
* - \b is_dense - specifies if all the data in <b>points</b> is finite (true), or whether it might contain Inf/NaN values
* (false). \a Mandatory.
*
* - \b sensor_origin_ - specifies the sensor acquisition pose (origin/translation). \a Optional.
* - \b sensor_orientation_ - specifies the sensor acquisition pose (rotation). \a Optional.
*
* \author Patrick Mihelich, Radu B. Rusu
*/
template <typename PointT>
class PCL_EXPORTS PointCloud
{
public:
/** \brief Default constructor. Sets \ref is_dense to true, \ref width
* and \ref height to 0, and the \ref sensor_origin_ and \ref
* sensor_orientation_ to identity.
*/
PointCloud () = default;
/** \brief Copy constructor from point cloud subset
* \param[in] pc the cloud to copy into this
* \param[in] indices the subset to copy
*/
PointCloud (const PointCloud<PointT> &pc,
const Indices &indices) :
header (pc.header), points (indices.size ()), width (indices.size ()), height (1), is_dense (pc.is_dense),
sensor_origin_ (pc.sensor_origin_), sensor_orientation_ (pc.sensor_orientation_)
{
// Copy the obvious
assert (indices.size () <= pc.size ());
for (std::size_t i = 0; i < indices.size (); i++)
points[i] = pc[indices[i]];
}
/** \brief Allocate constructor from point cloud subset
* \param[in] width_ the cloud width
* \param[in] height_ the cloud height
* \param[in] value_ default value
*/
PointCloud (std::uint32_t width_, std::uint32_t height_, const PointT& value_ = PointT ())
: points (width_ * height_, value_)
, width (width_)
, height (height_)
{}
//TODO: check if copy/move contructors/assignment operators are needed
/** \brief Add a point cloud to the current cloud.
* \param[in] rhs the cloud to add to the current cloud
* \return the new cloud as a concatenation of the current cloud and the new given cloud
*/
inline PointCloud&
operator += (const PointCloud& rhs)
{
concatenate((*this), rhs);
return (*this);
}
/** \brief Add a point cloud to another cloud.
* \param[in] rhs the cloud to add to the current cloud
* \return the new cloud as a concatenation of the current cloud and the new given cloud
*/
inline PointCloud
operator + (const PointCloud& rhs)
{
return (PointCloud (*this) += rhs);
}
inline static bool
concatenate(pcl::PointCloud<PointT> &cloud1,
const pcl::PointCloud<PointT> &cloud2)
{
// Make the resultant point cloud take the newest stamp
cloud1.header.stamp = std::max (cloud1.header.stamp, cloud2.header.stamp);
// libstdc++ (GCC) on calling reserve allocates new memory, copies and deallocates old vector
// This causes a drastic performance hit. Prefer not to use reserve with libstdc++ (default on clang)
cloud1.insert (cloud1.end (), cloud2.begin (), cloud2.end ());
cloud1.width = cloud1.size ();
cloud1.height = 1;
cloud1.is_dense = cloud1.is_dense && cloud2.is_dense;
return true;
}
inline static bool
concatenate(const pcl::PointCloud<PointT> &cloud1,
const pcl::PointCloud<PointT> &cloud2,
pcl::PointCloud<PointT> &cloud_out)
{
cloud_out = cloud1;
return concatenate(cloud_out, cloud2);
}
/** \brief Obtain the point given by the (column, row) coordinates. Only works on organized
* datasets (those that have height != 1).
* \param[in] column the column coordinate
* \param[in] row the row coordinate
*/
inline const PointT&
at (int column, int row) const
{
if (this->height > 1)
return (points.at (row * this->width + column));
else
throw UnorganizedPointCloudException ("Can't use 2D indexing with an unorganized point cloud");
}
/** \brief Obtain the point given by the (column, row) coordinates. Only works on organized
* datasets (those that have height != 1).
* \param[in] column the column coordinate
* \param[in] row the row coordinate
*/
inline PointT&
at (int column, int row)
{
if (this->height > 1)
return (points.at (row * this->width + column));
else
throw UnorganizedPointCloudException ("Can't use 2D indexing with an unorganized point cloud");
}
/** \brief Obtain the point given by the (column, row) coordinates. Only works on organized
* datasets (those that have height != 1).
* \param[in] column the column coordinate
* \param[in] row the row coordinate
*/
inline const PointT&
operator () (std::size_t column, std::size_t row) const
{
return (points[row * this->width + column]);
}
/** \brief Obtain the point given by the (column, row) coordinates. Only works on organized
* datasets (those that have height != 1).
* \param[in] column the column coordinate
* \param[in] row the row coordinate
*/
inline PointT&
operator () (std::size_t column, std::size_t row)
{
return (points[row * this->width + column]);
}
/** \brief Return whether a dataset is organized (e.g., arranged in a structured grid).
* \note The height value must be different than 1 for a dataset to be organized.
*/
inline bool
isOrganized () const
{
return (height > 1);
}
/** \brief Return an Eigen MatrixXf (assumes float values) mapped to the specified dimensions of the PointCloud.
* \note This method is for advanced users only! Use with care!
*
* \attention Compile time flags used for Eigen might affect the dimension of the Eigen::Map returned. If Eigen
* is using row major storage, the matrix shape would be (number of Points X elements in a Point) else
* the matrix shape would be (elements in a Point X number of Points). Essentially,
* * Major direction: number of points in cloud
* * Minor direction: number of point dimensions
* By default, as of Eigen 3.3, Eigen uses Column major storage
*
* \param[in] dim the number of dimensions to consider for each point
* \param[in] stride the number of values in each point (will be the number of values that separate two of the columns)
* \param[in] offset the number of dimensions to skip from the beginning of each point
* (stride = offset + dim + x, where x is the number of dimensions to skip from the end of each point)
* \note for getting only XYZ coordinates out of PointXYZ use dim=3, stride=4 and offset=0 due to the alignment.
* \attention PointT types are most of the time aligned, so the offsets are not continuous!
*/
inline Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
getMatrixXfMap (int dim, int stride, int offset)
{
if (Eigen::MatrixXf::Flags & Eigen::RowMajorBit)
return (Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(&points[0])+offset, size (), dim, Eigen::OuterStride<> (stride)));
else
return (Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(&points[0])+offset, dim, size (), Eigen::OuterStride<> (stride)));
}
/** \brief Return an Eigen MatrixXf (assumes float values) mapped to the specified dimensions of the PointCloud.
* \note This method is for advanced users only! Use with care!
*
* \attention Compile time flags used for Eigen might affect the dimension of the Eigen::Map returned. If Eigen
* is using row major storage, the matrix shape would be (number of Points X elements in a Point) else
* the matrix shape would be (elements in a Point X number of Points). Essentially,
* * Major direction: number of points in cloud
* * Minor direction: number of point dimensions
* By default, as of Eigen 3.3, Eigen uses Column major storage
*
* \param[in] dim the number of dimensions to consider for each point
* \param[in] stride the number of values in each point (will be the number of values that separate two of the columns)
* \param[in] offset the number of dimensions to skip from the beginning of each point
* (stride = offset + dim + x, where x is the number of dimensions to skip from the end of each point)
* \note for getting only XYZ coordinates out of PointXYZ use dim=3, stride=4 and offset=0 due to the alignment.
* \attention PointT types are most of the time aligned, so the offsets are not continuous!
*/
inline const Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
getMatrixXfMap (int dim, int stride, int offset) const
{
if (Eigen::MatrixXf::Flags & Eigen::RowMajorBit)
return (Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(const_cast<PointT*>(&points[0]))+offset, size (), dim, Eigen::OuterStride<> (stride)));
else
return (Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >(reinterpret_cast<float*>(const_cast<PointT*>(&points[0]))+offset, dim, size (), Eigen::OuterStride<> (stride)));
}
/**
* \brief Return an Eigen MatrixXf (assumes float values) mapped to the PointCloud.
* \note This method is for advanced users only! Use with care!
* \attention PointT types are most of the time aligned, so the offsets are not continuous!
* \overload Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> > pcl::PointCloud::getMatrixXfMap ()
*/
inline Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
getMatrixXfMap ()
{
return (getMatrixXfMap (sizeof (PointT) / sizeof (float), sizeof (PointT) / sizeof (float), 0));
}
/**
* \brief Return an Eigen MatrixXf (assumes float values) mapped to the PointCloud.
* \note This method is for advanced users only! Use with care!
* \attention PointT types are most of the time aligned, so the offsets are not continuous!
* \overload const Eigen::Map<Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> > pcl::PointCloud::getMatrixXfMap () const
*/
inline const Eigen::Map<const Eigen::MatrixXf, Eigen::Aligned, Eigen::OuterStride<> >
getMatrixXfMap () const
{
return (getMatrixXfMap (sizeof (PointT) / sizeof (float), sizeof (PointT) / sizeof (float), 0));
}
/** \brief The point cloud header. It contains information about the acquisition time. */
pcl::PCLHeader header;
/** \brief The point data. */
std::vector<PointT, Eigen::aligned_allocator<PointT> > points;
/** \brief The point cloud width (if organized as an image-structure). */
std::uint32_t width = 0;
/** \brief The point cloud height (if organized as an image-structure). */
std::uint32_t height = 0;
/** \brief True if no points are invalid (e.g., have NaN or Inf values in any of their floating point fields). */
bool is_dense = true;
/** \brief Sensor acquisition pose (origin/translation). */
Eigen::Vector4f sensor_origin_ = Eigen::Vector4f::Zero ();
/** \brief Sensor acquisition pose (rotation). */
Eigen::Quaternionf sensor_orientation_ = Eigen::Quaternionf::Identity ();
using PointType = PointT; // Make the template class available from the outside
using VectorType = std::vector<PointT, Eigen::aligned_allocator<PointT> >;
using CloudVectorType = std::vector<PointCloud<PointT>, Eigen::aligned_allocator<PointCloud<PointT> > >;
using Ptr = shared_ptr<PointCloud<PointT> >;
using ConstPtr = shared_ptr<const PointCloud<PointT> >;
// std container compatibility typedefs according to
// http://en.cppreference.com/w/cpp/concept/Container
using value_type = PointT;
using reference = PointT&;
using const_reference = const PointT&;
using difference_type = typename VectorType::difference_type;
using size_type = typename VectorType::size_type;
// iterators
using iterator = typename VectorType::iterator;
using const_iterator = typename VectorType::const_iterator;
using reverse_iterator = typename VectorType::reverse_iterator;
using const_reverse_iterator = typename VectorType::const_reverse_iterator;
inline iterator begin () noexcept { return (points.begin ()); }
inline iterator end () noexcept { return (points.end ()); }
inline const_iterator begin () const noexcept { return (points.begin ()); }
inline const_iterator end () const noexcept { return (points.end ()); }
inline const_iterator cbegin () const noexcept { return (points.cbegin ()); }
inline const_iterator cend () const noexcept { return (points.cend ()); }
inline reverse_iterator rbegin () noexcept { return (points.rbegin ()); }
inline reverse_iterator rend () noexcept { return (points.rend ()); }
inline const_reverse_iterator rbegin () const noexcept { return (points.rbegin ()); }
inline const_reverse_iterator rend () const noexcept { return (points.rend ()); }
inline const_reverse_iterator crbegin () const noexcept { return (points.crbegin ()); }
inline const_reverse_iterator crend () const noexcept { return (points.crend ()); }
//capacity
inline std::size_t size () const { return points.size (); }
inline index_t max_size() const noexcept { return static_cast<index_t>(points.max_size()); }
inline void reserve (std::size_t n) { points.reserve (n); }
inline bool empty () const { return points.empty (); }
inline PointT* data() noexcept { return points.data(); }
inline const PointT* data() const noexcept { return points.data(); }
/**
* \brief Resizes the container to contain `count` elements
* \details
* * If the current size is greater than `count`, the pointcloud is reduced to its
* first `count` elements
* * If the current size is less than `count`, additional default-inserted points
* are appended
* \note This potentially breaks the organized structure of the cloud by setting
* the height to 1 IFF `width * height != count`!
* \param[in] count new size of the point cloud
*/
inline void
resize(std::size_t count)
{
points.resize(count);
if (width * height != count) {
width = static_cast<std::uint32_t>(count);
height = 1;
}
}
/**
* \brief Resizes the container to contain `new_width * new_height` elements
* \details
* * If the current size is greater than the requested size, the pointcloud
* is reduced to its first requested elements
* * If the current size is less then the requested size, additional
* default-inserted points are appended
* \param[in] new_width new width of the point cloud
* \param[in] new_height new height of the point cloud
*/
inline void
resize(uindex_t new_width, uindex_t new_height)
{
points.resize(new_width * new_height);
width = new_width;
height = new_height;
}
/**
* \brief Resizes the container to contain count elements
* \details
* * If the current size is greater than `count`, the pointcloud is reduced to its
* first `count` elements
* * If the current size is less than `count`, additional copies of `value` are
* appended
* \note This potentially breaks the organized structure of the cloud by setting
* the height to 1 IFF `width * height != count`!
* \param[in] count new size of the point cloud
* \param[in] value the value to initialize the new points with
*/
inline void
resize(index_t count, const PointT& value)
{
points.resize(count, value);
if (width * height != count) {
width = count;
height = 1;
}
}
/**
* \brief Resizes the container to contain count elements
* \details
* * If the current size is greater then the requested size, the pointcloud
* is reduced to its first requested elements
* * If the current size is less then the requested size, additional
* default-inserted points are appended
* \param[in] new_width new width of the point cloud
* \param[in] new_height new height of the point cloud
* \param[in] value the value to initialize the new points with
*/
inline void
resize(index_t new_width, index_t new_height, const PointT& value)
{
points.resize(new_width * new_height, value);
width = new_width;
height = new_height;
}
//element access
inline const PointT& operator[] (std::size_t n) const { return (points[n]); }
inline PointT& operator[] (std::size_t n) { return (points[n]); }
inline const PointT& at (std::size_t n) const { return (points.at (n)); }
inline PointT& at (std::size_t n) { return (points.at (n)); }
inline const PointT& front () const { return (points.front ()); }
inline PointT& front () { return (points.front ()); }
inline const PointT& back () const { return (points.back ()); }
inline PointT& back () { return (points.back ()); }
/**
* \brief Replaces the points with `count` copies of `value`
* \note This breaks the organized structure of the cloud by setting the height to
* 1!
* \param[in] count new size of the point cloud
* \param[in] value value each point of the cloud should have
*/
inline void
assign(index_t count, const PointT& value)
{
points.assign(count, value);
width = static_cast<std::uint32_t>(size());
height = 1;
}
/**
* \brief Replaces the points with `new_width * new_height` copies of `value`
* \param[in] new_width new width of the point cloud
* \param[in] new_height new height of the point cloud
* \param[in] value value each point of the cloud should have
*/
inline void
assign(index_t new_width, index_t new_height, const PointT& value)
{
points.assign(new_width * new_height, value);
width = new_width;
height = new_height;
}
/**
* \brief Replaces the points with copies of those in the range `[first, last)`
* \details The behavior is undefined if either argument is an iterator into
* `*this`
* \note This breaks the organized structure of the cloud by setting the height to
* 1!
*/
template <class InputIterator>
inline void
assign(InputIterator first, InputIterator last)
{
points.assign(std::move(first), std::move(last));
width = static_cast<std::uint32_t>(size());
height = 1;
}
/**
* \brief Replaces the points with copies of those in the range `[first, last)`
* \details The behavior is undefined if either argument is an iterator into
* `*this`
* \note This calculates the height based on size and width provided. This means
* the assignment happens even if the size is not perfectly divisible by width
* \param[in] first, last the range from which the points are copied
* \param[in] new_width new width of the point cloud
*/
template <class InputIterator>
inline void
assign(InputIterator first, InputIterator last, index_t new_width)
{
points.assign(std::move(first), std::move(last));
width = new_width;
height = size() / width;
if (width * height != size()) {
PCL_WARN("Mismatch in assignment. Requested width (%zu) doesn't divide "
"provided size (%zu) cleanly. Setting height to 1\n",
static_cast<std::size_t>(width),
static_cast<std::size_t>(size()));
width = size();
height = 1;
}
}
/**
* \brief Replaces the points with the elements from the initializer list `ilist`
* \note This breaks the organized structure of the cloud by setting the height to
* 1!
*/
void
inline assign(std::initializer_list<PointT> ilist)
{
points.assign(std::move(ilist));
width = static_cast<std::uint32_t>(size());
height = 1;
}
/**
* \brief Replaces the points with the elements from the initializer list `ilist`
* \note This calculates the height based on size and width provided. This means
* the assignment happens even if the size is not perfectly divisible by width
* \param[in] ilist initializer list from which the points are copied
* \param[in] new_width new width of the point cloud
*/
void
inline assign(std::initializer_list<PointT> ilist, index_t new_width)
{
points.assign(std::move(ilist));
width = new_width;
height = size() / width;
if (width * height != size()) {
PCL_WARN("Mismatch in assignment. Requested width (%zu) doesn't divide "
"provided size (%zu) cleanly. Setting height to 1\n",
static_cast<std::size_t>(width),
static_cast<std::size_t>(size()));
width = size();
height = 1;
}
}
/** \brief Insert a new point in the cloud, at the end of the container.
* \note This breaks the organized structure of the cloud by setting the height to 1!
* \param[in] pt the point to insert
*/
inline void
push_back (const PointT& pt)
{
points.push_back (pt);
width = size ();
height = 1;
}
/** \brief Insert a new point in the cloud, at the end of the container.
* \note This assumes the user would correct the width and height later on!
* \param[in] pt the point to insert
*/
inline void
transient_push_back (const PointT& pt)
{
points.push_back (pt);
}
/** \brief Emplace a new point in the cloud, at the end of the container.
* \note This breaks the organized structure of the cloud by setting the height to 1!
* \param[in] args the parameters to forward to the point to construct
* \return reference to the emplaced point
*/
template <class... Args> inline reference
emplace_back (Args&& ...args)
{
points.emplace_back (std::forward<Args> (args)...);
width = size ();
height = 1;
return points.back();
}
/** \brief Emplace a new point in the cloud, at the end of the container.
* \note This assumes the user would correct the width and height later on!
* \param[in] args the parameters to forward to the point to construct
* \return reference to the emplaced point
*/
template <class... Args> inline reference
transient_emplace_back (Args&& ...args)
{
points.emplace_back (std::forward<Args> (args)...);
return points.back();
}
/** \brief Insert a new point in the cloud, given an iterator.
* \note This breaks the organized structure of the cloud by setting the height to 1!
* \param[in] position where to insert the point
* \param[in] pt the point to insert
* \return returns the new position iterator
*/
inline iterator
insert (iterator position, const PointT& pt)
{
iterator it = points.insert (std::move(position), pt);
width = size ();
height = 1;
return (it);
}
/** \brief Insert a new point in the cloud, given an iterator.
* \note This assumes the user would correct the width and height later on!
* \param[in] position where to insert the point
* \param[in] pt the point to insert
* \return returns the new position iterator
*/
inline iterator
transient_insert (iterator position, const PointT& pt)
{
iterator it = points.insert (std::move(position), pt);
return (it);
}
/** \brief Insert a new point in the cloud N times, given an iterator.
* \note This breaks the organized structure of the cloud by setting the height to 1!
* \param[in] position where to insert the point
* \param[in] n the number of times to insert the point
* \param[in] pt the point to insert
*/
inline void
insert (iterator position, std::size_t n, const PointT& pt)
{
points.insert (std::move(position), n, pt);
width = size ();
height = 1;
}
/** \brief Insert a new point in the cloud N times, given an iterator.
* \note This assumes the user would correct the width and height later on!
* \param[in] position where to insert the point
* \param[in] n the number of times to insert the point
* \param[in] pt the point to insert
*/
inline void
transient_insert (iterator position, std::size_t n, const PointT& pt)
{
points.insert (std::move(position), n, pt);
}
/** \brief Insert a new range of points in the cloud, at a certain position.
* \note This breaks the organized structure of the cloud by setting the height to 1!
* \param[in] position where to insert the data
* \param[in] first where to start inserting the points from
* \param[in] last where to stop inserting the points from
*/
template <class InputIterator> inline void
insert (iterator position, InputIterator first, InputIterator last)
{
points.insert (std::move(position), std::move(first), std::move(last));
width = size ();
height = 1;
}
/** \brief Insert a new range of points in the cloud, at a certain position.
* \note This assumes the user would correct the width and height later on!
* \param[in] position where to insert the data
* \param[in] first where to start inserting the points from
* \param[in] last where to stop inserting the points from
*/
template <class InputIterator> inline void
transient_insert (iterator position, InputIterator first, InputIterator last)
{
points.insert (std::move(position), std::move(first), std::move(last));
}
/** \brief Emplace a new point in the cloud, given an iterator.
* \note This breaks the organized structure of the cloud by setting the height to 1!
* \param[in] position iterator before which the point will be emplaced
* \param[in] args the parameters to forward to the point to construct
* \return returns the new position iterator
*/
template <class... Args> inline iterator
emplace (iterator position, Args&& ...args)
{
iterator it = points.emplace (std::move(position), std::forward<Args> (args)...);
width = size ();
height = 1;
return (it);
}
/** \brief Emplace a new point in the cloud, given an iterator.
* \note This assumes the user would correct the width and height later on!
* \param[in] position iterator before which the point will be emplaced
* \param[in] args the parameters to forward to the point to construct
* \return returns the new position iterator
*/
template <class... Args> inline iterator
transient_emplace (iterator position, Args&& ...args)
{
iterator it = points.emplace (std::move(position), std::forward<Args> (args)...);
return (it);
}
/** \brief Erase a point in the cloud.
* \note This breaks the organized structure of the cloud by setting the height to 1!
* \param[in] position what data point to erase
* \return returns the new position iterator
*/
inline iterator
erase (iterator position)
{
iterator it = points.erase (std::move(position));
width = size ();
height = 1;
return (it);
}
/** \brief Erase a point in the cloud.
* \note This assumes the user would correct the width and height later on!
* \param[in] position what data point to erase
* \return returns the new position iterator
*/
inline iterator
transient_erase (iterator position)
{
iterator it = points.erase (std::move(position));
return (it);
}
/** \brief Erase a set of points given by a (first, last) iterator pair
* \note This breaks the organized structure of the cloud by setting the height to 1!
* \param[in] first where to start erasing points from
* \param[in] last where to stop erasing points from
* \return returns the new position iterator
*/
inline iterator
erase (iterator first, iterator last)
{
iterator it = points.erase (std::move(first), std::move(last));
width = size ();
height = 1;
return (it);
}
/** \brief Erase a set of points given by a (first, last) iterator pair
* \note This assumes the user would correct the width and height later on!
* \param[in] first where to start erasing points from
* \param[in] last where to stop erasing points from
* \return returns the new position iterator
*/
inline iterator
transient_erase (iterator first, iterator last)
{
iterator it = points.erase (std::move(first), std::move(last));
return (it);
}
/** \brief Swap a point cloud with another cloud.
* \param[in,out] rhs point cloud to swap this with
*/
inline void
swap (PointCloud<PointT> &rhs)
{
std::swap (header, rhs.header);
this->points.swap (rhs.points);
std::swap (width, rhs.width);
std::swap (height, rhs.height);
std::swap (is_dense, rhs.is_dense);
std::swap (sensor_origin_, rhs.sensor_origin_);
std::swap (sensor_orientation_, rhs.sensor_orientation_);
}
/** \brief Removes all points in a cloud and sets the width and height to 0. */
inline void
clear ()
{
points.clear ();
width = 0;
height = 0;
}
/** \brief Copy the cloud to the heap and return a smart pointer
* Note that deep copy is performed, so avoid using this function on non-empty clouds.
* The changes of the returned cloud are not mirrored back to this one.
* \return shared pointer to the copy of the cloud
*/
inline Ptr
makeShared () const { return Ptr (new PointCloud<PointT> (*this)); }
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
template <typename PointT> std::ostream&
operator << (std::ostream& s, const pcl::PointCloud<PointT> &p)
{
s << "header: " << p.header << std::endl;
s << "points[]: " << p.size () << std::endl;
s << "width: " << p.width << std::endl;
s << "height: " << p.height << std::endl;
s << "is_dense: " << p.is_dense << std::endl;
s << "sensor origin (xyz): [" <<
p.sensor_origin_.x () << ", " <<
p.sensor_origin_.y () << ", " <<
p.sensor_origin_.z () << "] / orientation (xyzw): [" <<
p.sensor_orientation_.x () << ", " <<
p.sensor_orientation_.y () << ", " <<
p.sensor_orientation_.z () << ", " <<
p.sensor_orientation_.w () << "]" <<
std::endl;
return (s);
}
}
#define PCL_INSTANTIATE_PointCloud(T) template class PCL_EXPORTS pcl::PointCloud<T>;