278 lines
12 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#pragma once
#include <pcl/features/3dsc.h>
#include <pcl/common/angles.h>
#include <pcl/common/geometry.h>
#include <pcl/common/point_tests.h> // for pcl::isFinite
#include <pcl/common/utils.h>
#include <cmath>
#include <numeric> // for partial_sum
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> bool
pcl::ShapeContext3DEstimation<PointInT, PointNT, PointOutT>::initCompute ()
{
if (!FeatureFromNormals<PointInT, PointNT, PointOutT>::initCompute ())
{
PCL_ERROR ("[pcl::%s::initCompute] Init failed.\n", getClassName ().c_str ());
return (false);
}
if (search_radius_< min_radius_)
{
PCL_ERROR ("[pcl::%s::initCompute] search_radius_ must be GREATER than min_radius_.\n", getClassName ().c_str ());
return (false);
}
// Update descriptor length
descriptor_length_ = elevation_bins_ * azimuth_bins_ * radius_bins_;
// Compute radial, elevation and azimuth divisions
float azimuth_interval = 360.0f / static_cast<float> (azimuth_bins_);
float elevation_interval = 180.0f / static_cast<float> (elevation_bins_);
// Reallocate divisions and volume lut
radii_interval_.clear ();
phi_divisions_.clear ();
theta_divisions_.clear ();
volume_lut_.clear ();
// Fills radii interval based on formula (1) in section 2.1 of Frome's paper
radii_interval_.resize (radius_bins_ + 1);
for (std::size_t j = 0; j < radius_bins_ + 1; j++)
radii_interval_[j] = static_cast<float> (std::exp (std::log (min_radius_) + ((static_cast<float> (j) / static_cast<float> (radius_bins_)) * std::log (search_radius_ / min_radius_))));
// Fill theta divisions of elevation
theta_divisions_.resize (elevation_bins_ + 1, elevation_interval);
theta_divisions_[0] = 0.f;
std::partial_sum(theta_divisions_.begin (), theta_divisions_.end (), theta_divisions_.begin ());
// Fill phi didvisions of elevation
phi_divisions_.resize (azimuth_bins_ + 1, azimuth_interval);
phi_divisions_[0] = 0.f;
std::partial_sum(phi_divisions_.begin (), phi_divisions_.end (), phi_divisions_.begin ());
// LookUp Table that contains the volume of all the bins
// "phi" term of the volume integral
// "integr_phi" has always the same value so we compute it only one time
float integr_phi = pcl::deg2rad (phi_divisions_[1]) - pcl::deg2rad (phi_divisions_[0]);
// exponential to compute the cube root using pow
float e = 1.0f / 3.0f;
// Resize volume look up table
volume_lut_.resize (radius_bins_ * elevation_bins_ * azimuth_bins_);
// Fill volumes look up table
for (std::size_t j = 0; j < radius_bins_; j++)
{
// "r" term of the volume integral
float integr_r = (radii_interval_[j+1] * radii_interval_[j+1] * radii_interval_[j+1] / 3.0f) - (radii_interval_[j] * radii_interval_[j] * radii_interval_[j] / 3.0f);
for (std::size_t k = 0; k < elevation_bins_; k++)
{
// "theta" term of the volume integral
float integr_theta = std::cos (pcl::deg2rad (theta_divisions_[k])) - std::cos (pcl::deg2rad (theta_divisions_[k+1]));
// Volume
float V = integr_phi * integr_theta * integr_r;
// Compute cube root of the computed volume commented for performance but left
// here for clarity
// float cbrt = pow(V, e);
// cbrt = 1 / cbrt;
for (std::size_t l = 0; l < azimuth_bins_; l++)
{
// Store in lut 1/cbrt
//volume_lut_[ (l*elevation_bins_*radius_bins_) + k*radius_bins_ + j ] = cbrt;
volume_lut_[(l*elevation_bins_*radius_bins_) + k*radius_bins_ + j] = 1.0f / powf (V, e);
}
}
}
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> bool
pcl::ShapeContext3DEstimation<PointInT, PointNT, PointOutT>::computePoint (
std::size_t index, const pcl::PointCloud<PointNT> &normals, float rf[9], std::vector<float> &desc)
{
// The RF is formed as this x_axis | y_axis | normal
Eigen::Map<Eigen::Vector3f> x_axis (rf);
Eigen::Map<Eigen::Vector3f> y_axis (rf + 3);
Eigen::Map<Eigen::Vector3f> normal (rf + 6);
// Find every point within specified search_radius_
pcl::Indices nn_indices;
std::vector<float> nn_dists;
const std::size_t neighb_cnt = searchForNeighbors ((*indices_)[index], search_radius_, nn_indices, nn_dists);
if (neighb_cnt == 0)
{
std::fill (desc.begin (), desc.end (), std::numeric_limits<float>::quiet_NaN ());
std::fill (rf, rf + 9, 0.f);
return (false);
}
const auto minDistanceIt = std::min_element(nn_dists.begin (), nn_dists.end ());
const auto minIndex = nn_indices[std::distance (nn_dists.begin (), minDistanceIt)];
// Get origin point
Vector3fMapConst origin = (*input_)[(*indices_)[index]].getVector3fMap ();
// Get origin normal
// Use pre-computed normals
normal = normals[minIndex].getNormalVector3fMap ();
// Compute and store the RF direction
x_axis[0] = rnd ();
x_axis[1] = rnd ();
x_axis[2] = rnd ();
if (!pcl::utils::equal (normal[2], 0.0f))
x_axis[2] = - (normal[0]*x_axis[0] + normal[1]*x_axis[1]) / normal[2];
else if (!pcl::utils::equal (normal[1], 0.0f))
x_axis[1] = - (normal[0]*x_axis[0] + normal[2]*x_axis[2]) / normal[1];
else if (!pcl::utils::equal (normal[0], 0.0f))
x_axis[0] = - (normal[1]*x_axis[1] + normal[2]*x_axis[2]) / normal[0];
x_axis.normalize ();
// Check if the computed x axis is orthogonal to the normal
assert (pcl::utils::equal (x_axis[0]*normal[0] + x_axis[1]*normal[1] + x_axis[2]*normal[2], 0.0f, 1E-6f));
// Store the 3rd frame vector
y_axis.matrix () = normal.cross (x_axis);
// For each point within radius
for (std::size_t ne = 0; ne < neighb_cnt; ne++)
{
if (pcl::utils::equal (nn_dists[ne], 0.0f))
continue;
// Get neighbours coordinates
Eigen::Vector3f neighbour = (*surface_)[nn_indices[ne]].getVector3fMap ();
/// ----- Compute current neighbour polar coordinates -----
/// Get distance between the neighbour and the origin
float r = std::sqrt (nn_dists[ne]);
/// Project point into the tangent plane
Eigen::Vector3f proj;
pcl::geometry::project (neighbour, origin, normal, proj);
proj -= origin;
/// Normalize to compute the dot product
proj.normalize ();
/// Compute the angle between the projection and the x axis in the interval [0,360]
Eigen::Vector3f cross = x_axis.cross (proj);
float phi = pcl::rad2deg (std::atan2 (cross.norm (), x_axis.dot (proj)));
phi = cross.dot (normal) < 0.f ? (360.0f - phi) : phi;
/// Compute the angle between the neighbour and the z axis (normal) in the interval [0, 180]
Eigen::Vector3f no = neighbour - origin;
no.normalize ();
float theta = normal.dot (no);
theta = pcl::rad2deg (std::acos (std::min (1.0f, std::max (-1.0f, theta))));
// Compute the Bin(j, k, l) coordinates of current neighbour
const auto rad_min = std::lower_bound(std::next (radii_interval_.cbegin ()), radii_interval_.cend (), r);
const auto theta_min = std::lower_bound(std::next (theta_divisions_.cbegin ()), theta_divisions_.cend (), theta);
const auto phi_min = std::lower_bound(std::next (phi_divisions_.cbegin ()), phi_divisions_.cend (), phi);
// Bin (j, k, l)
const auto j = std::distance(radii_interval_.cbegin (), std::prev(rad_min));
const auto k = std::distance(theta_divisions_.cbegin (), std::prev(theta_min));
const auto l = std::distance(phi_divisions_.cbegin (), std::prev(phi_min));
// Local point density = number of points in a sphere of radius "point_density_radius_" around the current neighbour
pcl::Indices neighbour_indices;
std::vector<float> neighbour_distances;
int point_density = searchForNeighbors (*surface_, nn_indices[ne], point_density_radius_, neighbour_indices, neighbour_distances);
// point_density is NOT always bigger than 0 (on error, searchForNeighbors returns 0), so we must check for that
if (point_density == 0)
continue;
float w = (1.0f / static_cast<float> (point_density)) *
volume_lut_[(l*elevation_bins_*radius_bins_) + (k*radius_bins_) + j];
assert (w >= 0.0);
if (w == std::numeric_limits<float>::infinity ())
PCL_ERROR ("Shape Context Error INF!\n");
if (std::isnan(w))
PCL_ERROR ("Shape Context Error IND!\n");
/// Accumulate w into correspondent Bin(j,k,l)
desc[(l*elevation_bins_*radius_bins_) + (k*radius_bins_) + j] += w;
assert (desc[(l*elevation_bins_*radius_bins_) + (k*radius_bins_) + j] >= 0);
} // end for each neighbour
// 3DSC does not define a repeatable local RF, we set it to zero to signal it to the user
std::fill (rf, rf + 9, 0);
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::ShapeContext3DEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
{
assert (descriptor_length_ == 1980);
output.is_dense = true;
// Iterate over all points and compute the descriptors
for (std::size_t point_index = 0; point_index < indices_->size (); point_index++)
{
//output[point_index].descriptor.resize (descriptor_length_);
// If the point is not finite, set the descriptor to NaN and continue
if (!isFinite ((*input_)[(*indices_)[point_index]]))
{
std::fill (output[point_index].descriptor, output[point_index].descriptor + descriptor_length_,
std::numeric_limits<float>::quiet_NaN ());
std::fill (output[point_index].rf, output[point_index].rf + 9, 0);
output.is_dense = false;
continue;
}
std::vector<float> descriptor (descriptor_length_);
if (!computePoint (point_index, *normals_, output[point_index].rf, descriptor))
output.is_dense = false;
std::copy (descriptor.begin (), descriptor.end (), output[point_index].descriptor);
}
}
#define PCL_INSTANTIATE_ShapeContext3DEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::ShapeContext3DEstimation<T,NT,OutT>;