478 lines
16 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
*/
#pragma once
#include <pcl/common/transforms.h>
#if defined(__SSE2__)
#include <xmmintrin.h>
#endif
#if defined(__AVX__)
#include <immintrin.h>
#endif
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <vector>
namespace pcl
{
namespace detail
{
/** A helper struct to apply an SO3 or SE3 transform to a 3D point.
* Supports single and double precision transform matrices. */
template<typename Scalar>
struct Transformer
{
const Eigen::Matrix<Scalar, 4, 4>& tf;
/** Construct a transformer object.
* The transform matrix is captured by const reference. Make sure that it does not go out of scope before this
* object does. */
Transformer (const Eigen::Matrix<Scalar, 4, 4>& transform) : tf (transform) { };
/** Apply SO3 transform (top-left corner of the transform matrix).
* \param[in] src input 3D point (pointer to 3 floats)
* \param[out] tgt output 3D point (pointer to 4 floats), can be the same as input. The fourth element is set to 0. */
void so3 (const float* src, float* tgt) const
{
const Scalar p[3] = { src[0], src[1], src[2] }; // need this when src == tgt
tgt[0] = static_cast<float> (tf (0, 0) * p[0] + tf (0, 1) * p[1] + tf (0, 2) * p[2]);
tgt[1] = static_cast<float> (tf (1, 0) * p[0] + tf (1, 1) * p[1] + tf (1, 2) * p[2]);
tgt[2] = static_cast<float> (tf (2, 0) * p[0] + tf (2, 1) * p[1] + tf (2, 2) * p[2]);
tgt[3] = 0;
}
/** Apply SE3 transform.
* \param[in] src input 3D point (pointer to 3 floats)
* \param[out] tgt output 3D point (pointer to 4 floats), can be the same as input. The fourth element is set to 1. */
void se3 (const float* src, float* tgt) const
{
const Scalar p[3] = { src[0], src[1], src[2] }; // need this when src == tgt
tgt[0] = static_cast<float> (tf (0, 0) * p[0] + tf (0, 1) * p[1] + tf (0, 2) * p[2] + tf (0, 3));
tgt[1] = static_cast<float> (tf (1, 0) * p[0] + tf (1, 1) * p[1] + tf (1, 2) * p[2] + tf (1, 3));
tgt[2] = static_cast<float> (tf (2, 0) * p[0] + tf (2, 1) * p[1] + tf (2, 2) * p[2] + tf (2, 3));
tgt[3] = 1;
}
};
#if defined(__SSE2__)
/** Optimized version for single-precision transforms using SSE2 intrinsics. */
template<>
struct Transformer<float>
{
/// Columns of the transform matrix stored in XMM registers.
__m128 c[4];
Transformer(const Eigen::Matrix4f& tf)
{
for (std::size_t i = 0; i < 4; ++i)
c[i] = _mm_load_ps (tf.col (i).data ());
}
void so3 (const float* src, float* tgt) const
{
__m128 p0 = _mm_mul_ps (_mm_load_ps1 (&src[0]), c[0]);
__m128 p1 = _mm_mul_ps (_mm_load_ps1 (&src[1]), c[1]);
__m128 p2 = _mm_mul_ps (_mm_load_ps1 (&src[2]), c[2]);
_mm_store_ps (tgt, _mm_add_ps(p0, _mm_add_ps(p1, p2)));
}
void se3 (const float* src, float* tgt) const
{
__m128 p0 = _mm_mul_ps (_mm_load_ps1 (&src[0]), c[0]);
__m128 p1 = _mm_mul_ps (_mm_load_ps1 (&src[1]), c[1]);
__m128 p2 = _mm_mul_ps (_mm_load_ps1 (&src[2]), c[2]);
_mm_store_ps (tgt, _mm_add_ps(p0, _mm_add_ps(p1, _mm_add_ps(p2, c[3]))));
}
};
#if !defined(__AVX__)
/** Optimized version for double-precision transform using SSE2 intrinsics. */
template<>
struct Transformer<double>
{
/// Columns of the transform matrix stored in XMM registers.
__m128d c[4][2];
Transformer(const Eigen::Matrix4d& tf)
{
for (std::size_t i = 0; i < 4; ++i)
{
c[i][0] = _mm_load_pd (tf.col (i).data () + 0);
c[i][1] = _mm_load_pd (tf.col (i).data () + 2);
}
}
void so3 (const float* src, float* tgt) const
{
__m128d xx = _mm_cvtps_pd (_mm_load_ps1 (&src[0]));
__m128d p0 = _mm_mul_pd (xx, c[0][0]);
__m128d p1 = _mm_mul_pd (xx, c[0][1]);
for (std::size_t i = 1; i < 3; ++i)
{
__m128d vv = _mm_cvtps_pd (_mm_load_ps1 (&src[i]));
p0 = _mm_add_pd (_mm_mul_pd (vv, c[i][0]), p0);
p1 = _mm_add_pd (_mm_mul_pd (vv, c[i][1]), p1);
}
_mm_store_ps (tgt, _mm_movelh_ps (_mm_cvtpd_ps (p0), _mm_cvtpd_ps (p1)));
}
void se3 (const float* src, float* tgt) const
{
__m128d p0 = c[3][0];
__m128d p1 = c[3][1];
for (std::size_t i = 0; i < 3; ++i)
{
__m128d vv = _mm_cvtps_pd (_mm_load_ps1 (&src[i]));
p0 = _mm_add_pd (_mm_mul_pd (vv, c[i][0]), p0);
p1 = _mm_add_pd (_mm_mul_pd (vv, c[i][1]), p1);
}
_mm_store_ps (tgt, _mm_movelh_ps (_mm_cvtpd_ps (p0), _mm_cvtpd_ps (p1)));
}
};
#else
/** Optimized version for double-precision transform using AVX intrinsics. */
template<>
struct Transformer<double>
{
__m256d c[4];
Transformer(const Eigen::Matrix4d& tf)
{
for (std::size_t i = 0; i < 4; ++i)
c[i] = _mm256_load_pd (tf.col (i).data ());
}
void so3 (const float* src, float* tgt) const
{
__m256d p0 = _mm256_mul_pd (_mm256_cvtps_pd (_mm_load_ps1 (&src[0])), c[0]);
__m256d p1 = _mm256_mul_pd (_mm256_cvtps_pd (_mm_load_ps1 (&src[1])), c[1]);
__m256d p2 = _mm256_mul_pd (_mm256_cvtps_pd (_mm_load_ps1 (&src[2])), c[2]);
_mm_store_ps (tgt, _mm256_cvtpd_ps (_mm256_add_pd(p0, _mm256_add_pd(p1, p2))));
}
void se3 (const float* src, float* tgt) const
{
__m256d p0 = _mm256_mul_pd (_mm256_cvtps_pd (_mm_load_ps1 (&src[0])), c[0]);
__m256d p1 = _mm256_mul_pd (_mm256_cvtps_pd (_mm_load_ps1 (&src[1])), c[1]);
__m256d p2 = _mm256_mul_pd (_mm256_cvtps_pd (_mm_load_ps1 (&src[2])), c[2]);
_mm_store_ps (tgt, _mm256_cvtpd_ps (_mm256_add_pd(p0, _mm256_add_pd(p1, _mm256_add_pd(p2, c[3])))));
}
};
#endif // !defined(__AVX__)
#endif // defined(__SSE2__)
} // namespace detail
template <typename PointT, typename Scalar> void
transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
pcl::PointCloud<PointT> &cloud_out,
const Eigen::Matrix<Scalar, 4, 4> &transform,
bool copy_all_fields)
{
if (&cloud_in != &cloud_out)
{
cloud_out.header = cloud_in.header;
cloud_out.is_dense = cloud_in.is_dense;
cloud_out.reserve (cloud_in.size ());
if (copy_all_fields)
cloud_out.assign (cloud_in.begin (), cloud_in.end (), cloud_in.width);
else
cloud_out.resize (cloud_in.width, cloud_in.height);
cloud_out.sensor_orientation_ = cloud_in.sensor_orientation_;
cloud_out.sensor_origin_ = cloud_in.sensor_origin_;
}
pcl::detail::Transformer<Scalar> tf (transform);
if (cloud_in.is_dense)
{
// If the dataset is dense, simply transform it!
for (std::size_t i = 0; i < cloud_out.size (); ++i)
tf.se3 (cloud_in[i].data, cloud_out[i].data);
}
else
{
// Dataset might contain NaNs and Infs, so check for them first,
// otherwise we get errors during the multiplication (?)
for (std::size_t i = 0; i < cloud_out.size (); ++i)
{
if (!std::isfinite (cloud_in[i].x) ||
!std::isfinite (cloud_in[i].y) ||
!std::isfinite (cloud_in[i].z))
continue;
tf.se3 (cloud_in[i].data, cloud_out[i].data);
}
}
}
template <typename PointT, typename Scalar> void
transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
const Indices &indices,
pcl::PointCloud<PointT> &cloud_out,
const Eigen::Matrix<Scalar, 4, 4> &transform,
bool copy_all_fields)
{
std::size_t npts = indices.size ();
// In order to transform the data, we need to remove NaNs
cloud_out.is_dense = cloud_in.is_dense;
cloud_out.header = cloud_in.header;
cloud_out.width = static_cast<int> (npts);
cloud_out.height = 1;
cloud_out.resize (npts);
cloud_out.sensor_orientation_ = cloud_in.sensor_orientation_;
cloud_out.sensor_origin_ = cloud_in.sensor_origin_;
pcl::detail::Transformer<Scalar> tf (transform);
if (cloud_in.is_dense)
{
// If the dataset is dense, simply transform it!
for (std::size_t i = 0; i < npts; ++i)
{
// Copy fields first, then transform xyz data
if (copy_all_fields)
cloud_out[i] = cloud_in[indices[i]];
tf.se3 (cloud_in[indices[i]].data, cloud_out[i].data);
}
}
else
{
// Dataset might contain NaNs and Infs, so check for them first,
// otherwise we get errors during the multiplication (?)
for (std::size_t i = 0; i < npts; ++i)
{
if (copy_all_fields)
cloud_out[i] = cloud_in[indices[i]];
if (!std::isfinite (cloud_in[indices[i]].x) ||
!std::isfinite (cloud_in[indices[i]].y) ||
!std::isfinite (cloud_in[indices[i]].z))
continue;
tf.se3 (cloud_in[indices[i]].data, cloud_out[i].data);
}
}
}
template <typename PointT, typename Scalar> void
transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
pcl::PointCloud<PointT> &cloud_out,
const Eigen::Matrix<Scalar, 4, 4> &transform,
bool copy_all_fields)
{
if (&cloud_in != &cloud_out)
{
// Note: could be replaced by cloud_out = cloud_in
cloud_out.header = cloud_in.header;
cloud_out.is_dense = cloud_in.is_dense;
cloud_out.reserve (cloud_in.size ());
if (copy_all_fields)
cloud_out.assign (cloud_in.begin (), cloud_in.end (), cloud_in.width);
else
cloud_out.resize (cloud_in.width, cloud_in.height);
cloud_out.sensor_orientation_ = cloud_in.sensor_orientation_;
cloud_out.sensor_origin_ = cloud_in.sensor_origin_;
}
pcl::detail::Transformer<Scalar> tf (transform);
// If the data is dense, we don't need to check for NaN
if (cloud_in.is_dense)
{
for (std::size_t i = 0; i < cloud_out.size (); ++i)
{
tf.se3 (cloud_in[i].data, cloud_out[i].data);
tf.so3 (cloud_in[i].data_n, cloud_out[i].data_n);
}
}
// Dataset might contain NaNs and Infs, so check for them first.
else
{
for (std::size_t i = 0; i < cloud_out.size (); ++i)
{
if (!std::isfinite (cloud_in[i].x) ||
!std::isfinite (cloud_in[i].y) ||
!std::isfinite (cloud_in[i].z))
continue;
tf.se3 (cloud_in[i].data, cloud_out[i].data);
tf.so3 (cloud_in[i].data_n, cloud_out[i].data_n);
}
}
}
template <typename PointT, typename Scalar> void
transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
const Indices &indices,
pcl::PointCloud<PointT> &cloud_out,
const Eigen::Matrix<Scalar, 4, 4> &transform,
bool copy_all_fields)
{
std::size_t npts = indices.size ();
// In order to transform the data, we need to remove NaNs
cloud_out.is_dense = cloud_in.is_dense;
cloud_out.header = cloud_in.header;
cloud_out.width = static_cast<int> (npts);
cloud_out.height = 1;
cloud_out.resize (npts);
cloud_out.sensor_orientation_ = cloud_in.sensor_orientation_;
cloud_out.sensor_origin_ = cloud_in.sensor_origin_;
pcl::detail::Transformer<Scalar> tf (transform);
// If the data is dense, we don't need to check for NaN
if (cloud_in.is_dense)
{
for (std::size_t i = 0; i < cloud_out.size (); ++i)
{
// Copy fields first, then transform
if (copy_all_fields)
cloud_out[i] = cloud_in[indices[i]];
tf.se3 (cloud_in[indices[i]].data, cloud_out[i].data);
tf.so3 (cloud_in[indices[i]].data_n, cloud_out[i].data_n);
}
}
// Dataset might contain NaNs and Infs, so check for them first.
else
{
for (std::size_t i = 0; i < cloud_out.size (); ++i)
{
// Copy fields first, then transform
if (copy_all_fields)
cloud_out[i] = cloud_in[indices[i]];
if (!std::isfinite (cloud_in[indices[i]].x) ||
!std::isfinite (cloud_in[indices[i]].y) ||
!std::isfinite (cloud_in[indices[i]].z))
continue;
tf.se3 (cloud_in[indices[i]].data, cloud_out[i].data);
tf.so3 (cloud_in[indices[i]].data_n, cloud_out[i].data_n);
}
}
}
template <typename PointT, typename Scalar> inline void
transformPointCloud (const pcl::PointCloud<PointT> &cloud_in,
pcl::PointCloud<PointT> &cloud_out,
const Eigen::Matrix<Scalar, 3, 1> &offset,
const Eigen::Quaternion<Scalar> &rotation,
bool copy_all_fields)
{
Eigen::Translation<Scalar, 3> translation (offset);
// Assemble an Eigen Transform
Eigen::Transform<Scalar, 3, Eigen::Affine> t (translation * rotation);
transformPointCloud (cloud_in, cloud_out, t, copy_all_fields);
}
template <typename PointT, typename Scalar> inline void
transformPointCloudWithNormals (const pcl::PointCloud<PointT> &cloud_in,
pcl::PointCloud<PointT> &cloud_out,
const Eigen::Matrix<Scalar, 3, 1> &offset,
const Eigen::Quaternion<Scalar> &rotation,
bool copy_all_fields)
{
Eigen::Translation<Scalar, 3> translation (offset);
// Assemble an Eigen Transform
Eigen::Transform<Scalar, 3, Eigen::Affine> t (translation * rotation);
transformPointCloudWithNormals (cloud_in, cloud_out, t, copy_all_fields);
}
template <typename PointT, typename Scalar> inline PointT
transformPoint (const PointT &point, const Eigen::Transform<Scalar, 3, Eigen::Affine> &transform)
{
PointT ret = point;
pcl::detail::Transformer<Scalar> tf (transform.matrix ());
tf.se3 (point.data, ret.data);
return (ret);
}
template <typename PointT, typename Scalar> inline PointT
transformPointWithNormal (const PointT &point, const Eigen::Transform<Scalar, 3, Eigen::Affine> &transform)
{
PointT ret = point;
pcl::detail::Transformer<Scalar> tf (transform.matrix ());
tf.se3 (point.data, ret.data);
tf.so3 (point.data_n, ret.data_n);
return (ret);
}
template <typename PointT, typename Scalar> double
getPrincipalTransformation (const pcl::PointCloud<PointT> &cloud,
Eigen::Transform<Scalar, 3, Eigen::Affine> &transform)
{
EIGEN_ALIGN16 Eigen::Matrix<Scalar, 3, 3> covariance_matrix;
Eigen::Matrix<Scalar, 4, 1> centroid;
pcl::computeMeanAndCovarianceMatrix (cloud, covariance_matrix, centroid);
EIGEN_ALIGN16 Eigen::Matrix<Scalar, 3, 3> eigen_vects;
Eigen::Matrix<Scalar, 3, 1> eigen_vals;
pcl::eigen33 (covariance_matrix, eigen_vects, eigen_vals);
double rel1 = eigen_vals.coeff (0) / eigen_vals.coeff (1);
double rel2 = eigen_vals.coeff (1) / eigen_vals.coeff (2);
transform.translation () = centroid.head (3);
transform.linear () = eigen_vects;
return (std::min (rel1, rel2));
}
} // namespace pcl