401 lines
21 KiB
HTML
401 lines
21 KiB
HTML
|
||
|
||
<!DOCTYPE html>
|
||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||
<head>
|
||
<meta charset="utf-8">
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||
|
||
<title>Removing outliers using a StatisticalOutlierRemoval filter — Point Cloud Library 1.12.0 documentation</title>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<script type="text/javascript" src="_static/js/modernizr.min.js"></script>
|
||
|
||
|
||
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
|
||
<script type="text/javascript" src="_static/jquery.js"></script>
|
||
<script type="text/javascript" src="_static/underscore.js"></script>
|
||
<script type="text/javascript" src="_static/doctools.js"></script>
|
||
<script type="text/javascript" src="_static/language_data.js"></script>
|
||
|
||
<script type="text/javascript" src="_static/js/theme.js"></script>
|
||
|
||
|
||
|
||
|
||
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
|
||
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
|
||
<link rel="index" title="Index" href="genindex.html" />
|
||
<link rel="search" title="Search" href="search.html" />
|
||
</head>
|
||
|
||
<body class="wy-body-for-nav">
|
||
|
||
|
||
<div class="wy-grid-for-nav">
|
||
|
||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||
<div class="wy-side-scroll">
|
||
<div class="wy-side-nav-search" >
|
||
|
||
|
||
|
||
<a href="index.html" class="icon icon-home"> Point Cloud Library
|
||
|
||
|
||
|
||
</a>
|
||
|
||
|
||
|
||
|
||
<div class="version">
|
||
1.12.0
|
||
</div>
|
||
|
||
|
||
|
||
|
||
<div role="search">
|
||
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
|
||
<input type="text" name="q" placeholder="Search docs" />
|
||
<input type="hidden" name="check_keywords" value="yes" />
|
||
<input type="hidden" name="area" value="default" />
|
||
</form>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
|
||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<!-- Local TOC -->
|
||
<div class="local-toc"><ul>
|
||
<li><a class="reference internal" href="#">Removing outliers using a StatisticalOutlierRemoval filter</a></li>
|
||
<li><a class="reference internal" href="#background">Background</a></li>
|
||
<li><a class="reference internal" href="#the-code">The code</a></li>
|
||
<li><a class="reference internal" href="#the-explanation">The explanation</a></li>
|
||
<li><a class="reference internal" href="#compiling-and-running-the-program">Compiling and running the program</a></li>
|
||
</ul>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
</div>
|
||
</nav>
|
||
|
||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||
|
||
|
||
<nav class="wy-nav-top" aria-label="top navigation">
|
||
|
||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||
<a href="index.html">Point Cloud Library</a>
|
||
|
||
</nav>
|
||
|
||
|
||
<div class="wy-nav-content">
|
||
|
||
<div class="rst-content">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||
|
||
<ul class="wy-breadcrumbs">
|
||
|
||
<li><a href="index.html">Docs</a> »</li>
|
||
|
||
<li>Removing outliers using a StatisticalOutlierRemoval filter</li>
|
||
|
||
|
||
<li class="wy-breadcrumbs-aside">
|
||
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
|
||
<hr/>
|
||
</div>
|
||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||
<div itemprop="articleBody">
|
||
|
||
<div class="section" id="removing-outliers-using-a-statisticaloutlierremoval-filter">
|
||
<span id="statistical-outlier-removal"></span><h1>Removing outliers using a StatisticalOutlierRemoval filter</h1>
|
||
<p>In this tutorial we will learn how to remove noisy measurements, e.g. outliers,
|
||
from a point cloud dataset using statistical analysis techniques.</p>
|
||
<iframe title="Removing outliers using a StatisticalOutlierRemoval filter" width="480" height="390" src="https://www.youtube.com/embed/RjQPp2_GRnI?rel=0" frameborder="0" allowfullscreen></iframe></div>
|
||
<div class="section" id="background">
|
||
<h1>Background</h1>
|
||
<p>Laser scans typically generate point cloud datasets of varying point densities.
|
||
Additionally, measurement errors lead to sparse outliers which corrupt the
|
||
results even more. This complicates the estimation of local point cloud
|
||
characteristics such as surface normals or curvature changes, leading to
|
||
erroneous values, which in turn might cause point cloud registration failures.
|
||
Some of these irregularities can be solved by performing a statistical analysis
|
||
on each point’s neighborhood, and trimming those which do not meet a certain
|
||
criterion. Our sparse outlier removal is based on the computation of the
|
||
distribution of point to neighbors distances in the input dataset. For each
|
||
point, we compute the mean distance from it to all its neighbors. By assuming
|
||
that the resulted distribution is Gaussian with a mean and a standard
|
||
deviation, all points whose mean distances are outside an interval defined by
|
||
the global distances mean and standard deviation can be considered as outliers
|
||
and trimmed from the dataset.</p>
|
||
<p>The following picture shows the effects of the sparse outlier analysis and
|
||
removal: the original dataset is shown on the left, while the resultant one on
|
||
the right. The graphic shows the mean k-nearest neighbor distances in a point
|
||
neighborhood before and after filtering.</p>
|
||
<img alt="_images/statistical_removal_2.jpg" src="_images/statistical_removal_2.jpg" />
|
||
</div>
|
||
<div class="section" id="the-code">
|
||
<h1>The code</h1>
|
||
<p>First, download the dataset <a class="reference external" href="https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_lms400.pcd">table_scene_lms400.pcd</a>
|
||
and save it somewhere to disk.</p>
|
||
<p>Then, create a file, let’s say, <code class="docutils literal notranslate"><span class="pre">statistical_removal.cpp</span></code> in your favorite
|
||
editor, and place the following inside it:</p>
|
||
<div class="highlight-cpp notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
|
||
2
|
||
3
|
||
4
|
||
5
|
||
6
|
||
7
|
||
8
|
||
9
|
||
10
|
||
11
|
||
12
|
||
13
|
||
14
|
||
15
|
||
16
|
||
17
|
||
18
|
||
19
|
||
20
|
||
21
|
||
22
|
||
23
|
||
24
|
||
25
|
||
26
|
||
27
|
||
28
|
||
29
|
||
30
|
||
31
|
||
32
|
||
33
|
||
34
|
||
35
|
||
36
|
||
37
|
||
38</pre></div></td><td class="code"><div class="highlight"><pre><span></span><span class="cp">#include</span> <span class="cpf"><iostream></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/io/pcd_io.h></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/point_types.h></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/filters/statistical_outlier_removal.h></span><span class="cp"></span>
|
||
|
||
<span class="kt">int</span>
|
||
<span class="nf">main</span> <span class="p">()</span>
|
||
<span class="p">{</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PointCloud</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">>::</span><span class="n">Ptr</span> <span class="n">cloud</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">PointCloud</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span><span class="p">);</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PointCloud</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">>::</span><span class="n">Ptr</span> <span class="n">cloud_filtered</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">PointCloud</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span><span class="p">);</span>
|
||
|
||
<span class="c1">// Fill in the cloud data</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PCDReader</span> <span class="n">reader</span><span class="p">;</span>
|
||
<span class="c1">// Replace the path below with the path where you saved your file</span>
|
||
<span class="n">reader</span><span class="p">.</span><span class="n">read</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="p">(</span><span class="s">"table_scene_lms400.pcd"</span><span class="p">,</span> <span class="o">*</span><span class="n">cloud</span><span class="p">);</span>
|
||
|
||
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="s">"Cloud before filtering: "</span> <span class="o"><<</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
|
||
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="o">*</span><span class="n">cloud</span> <span class="o"><<</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
|
||
|
||
<span class="c1">// Create the filtering object</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">StatisticalOutlierRemoval</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="n">sor</span><span class="p">;</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setInputCloud</span> <span class="p">(</span><span class="n">cloud</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setMeanK</span> <span class="p">(</span><span class="mi">50</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setStddevMulThresh</span> <span class="p">(</span><span class="mf">1.0</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">filter</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_filtered</span><span class="p">);</span>
|
||
|
||
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="s">"Cloud after filtering: "</span> <span class="o"><<</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
|
||
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="o">*</span><span class="n">cloud_filtered</span> <span class="o"><<</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
|
||
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PCDWriter</span> <span class="n">writer</span><span class="p">;</span>
|
||
<span class="n">writer</span><span class="p">.</span><span class="n">write</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="p">(</span><span class="s">"table_scene_lms400_inliers.pcd"</span><span class="p">,</span> <span class="o">*</span><span class="n">cloud_filtered</span><span class="p">,</span> <span class="nb">false</span><span class="p">);</span>
|
||
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setNegative</span> <span class="p">(</span><span class="nb">true</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">filter</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_filtered</span><span class="p">);</span>
|
||
<span class="n">writer</span><span class="p">.</span><span class="n">write</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="p">(</span><span class="s">"table_scene_lms400_outliers.pcd"</span><span class="p">,</span> <span class="o">*</span><span class="n">cloud_filtered</span><span class="p">,</span> <span class="nb">false</span><span class="p">);</span>
|
||
|
||
<span class="k">return</span> <span class="p">(</span><span class="mi">0</span><span class="p">);</span>
|
||
<span class="p">}</span>
|
||
</pre></div>
|
||
</td></tr></table></div>
|
||
</div>
|
||
<div class="section" id="the-explanation">
|
||
<h1>The explanation</h1>
|
||
<p>Now, let’s break down the code piece by piece.</p>
|
||
<p>The following lines of code will read the point cloud data from disk.</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="c1">// Fill in the cloud data</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PCDReader</span> <span class="n">reader</span><span class="p">;</span>
|
||
<span class="c1">// Replace the path below with the path where you saved your file</span>
|
||
<span class="n">reader</span><span class="p">.</span><span class="n">read</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="p">(</span><span class="s">"table_scene_lms400.pcd"</span><span class="p">,</span> <span class="o">*</span><span class="n">cloud</span><span class="p">);</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>Then, a <em>pcl::StatisticalOutlierRemoval</em> filter is created. The number of
|
||
neighbors to analyze for each point is set to 50, and the standard deviation
|
||
multiplier to 1. What this means is that all points who have a distance larger
|
||
than 1 standard deviation of the mean distance to the query point will be
|
||
marked as outliers and removed. The output is computed and stored in
|
||
<em>cloud_filtered</em>.</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="c1">// Create the filtering object</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">StatisticalOutlierRemoval</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="n">sor</span><span class="p">;</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setInputCloud</span> <span class="p">(</span><span class="n">cloud</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setMeanK</span> <span class="p">(</span><span class="mi">50</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setStddevMulThresh</span> <span class="p">(</span><span class="mf">1.0</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">filter</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_filtered</span><span class="p">);</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>The remaining data (inliers) is written to disk for later inspection.</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="n">pcl</span><span class="o">::</span><span class="n">PCDWriter</span> <span class="n">writer</span><span class="p">;</span>
|
||
<span class="n">writer</span><span class="p">.</span><span class="n">write</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="p">(</span><span class="s">"table_scene_lms400_inliers.pcd"</span><span class="p">,</span> <span class="o">*</span><span class="n">cloud_filtered</span><span class="p">,</span> <span class="nb">false</span><span class="p">);</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>Then, the filter is called with the same parameters, but with the output
|
||
negated, to obtain the outliers (e.g., the points that were filtered).</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="n">sor</span><span class="p">.</span><span class="n">setNegative</span> <span class="p">(</span><span class="nb">true</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">filter</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_filtered</span><span class="p">);</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>And the data is written back to disk.</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="n">writer</span><span class="p">.</span><span class="n">write</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="p">(</span><span class="s">"table_scene_lms400_outliers.pcd"</span><span class="p">,</span> <span class="o">*</span><span class="n">cloud_filtered</span><span class="p">,</span> <span class="nb">false</span><span class="p">);</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="compiling-and-running-the-program">
|
||
<h1>Compiling and running the program</h1>
|
||
<p>Add the following lines to your CMakeLists.txt file:</p>
|
||
<div class="highlight-cmake notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
|
||
2
|
||
3
|
||
4
|
||
5
|
||
6
|
||
7
|
||
8
|
||
9
|
||
10
|
||
11
|
||
12</pre></div></td><td class="code"><div class="highlight"><pre><span></span><span class="nb">cmake_minimum_required</span><span class="p">(</span><span class="s">VERSION</span> <span class="s">3.5</span> <span class="s">FATAL_ERROR</span><span class="p">)</span>
|
||
|
||
<span class="nb">project</span><span class="p">(</span><span class="s">statistical_removal</span><span class="p">)</span>
|
||
|
||
<span class="nb">find_package</span><span class="p">(</span><span class="s">PCL</span> <span class="s">1.2</span> <span class="s">REQUIRED</span><span class="p">)</span>
|
||
|
||
<span class="nb">include_directories</span><span class="p">(</span><span class="o">${</span><span class="nv">PCL_INCLUDE_DIRS</span><span class="o">}</span><span class="p">)</span>
|
||
<span class="nb">link_directories</span><span class="p">(</span><span class="o">${</span><span class="nv">PCL_LIBRARY_DIRS</span><span class="o">}</span><span class="p">)</span>
|
||
<span class="nb">add_definitions</span><span class="p">(</span><span class="o">${</span><span class="nv">PCL_DEFINITIONS</span><span class="o">}</span><span class="p">)</span>
|
||
|
||
<span class="nb">add_executable</span> <span class="p">(</span><span class="s">statistical_removal</span> <span class="s">statistical_removal.cpp</span><span class="p">)</span>
|
||
<span class="nb">target_link_libraries</span> <span class="p">(</span><span class="s">statistical_removal</span> <span class="o">${</span><span class="nv">PCL_LIBRARIES</span><span class="o">}</span><span class="p">)</span>
|
||
</pre></div>
|
||
</td></tr></table></div>
|
||
<p>After you have made the executable, you can run it. Simply do:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>$ ./statistical_removal
|
||
</pre></div>
|
||
</div>
|
||
<p>You will see something similar to:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">Cloud</span> <span class="n">before</span> <span class="n">filtering</span><span class="p">:</span>
|
||
<span class="n">header</span><span class="p">:</span>
|
||
<span class="n">seq</span><span class="p">:</span> <span class="mi">0</span>
|
||
<span class="n">stamp</span><span class="p">:</span> <span class="mf">0.000000000</span>
|
||
<span class="n">frame_id</span><span class="p">:</span>
|
||
<span class="n">points</span><span class="p">[]:</span> <span class="mi">460400</span>
|
||
<span class="n">width</span><span class="p">:</span> <span class="mi">460400</span>
|
||
<span class="n">height</span><span class="p">:</span> <span class="mi">1</span>
|
||
<span class="n">is_dense</span><span class="p">:</span> <span class="mi">0</span>
|
||
|
||
<span class="n">Cloud</span> <span class="n">after</span> <span class="n">filtering</span><span class="p">:</span>
|
||
<span class="n">header</span><span class="p">:</span>
|
||
<span class="n">seq</span><span class="p">:</span> <span class="mi">0</span>
|
||
<span class="n">stamp</span><span class="p">:</span> <span class="mf">0.000000000</span>
|
||
<span class="n">frame_id</span><span class="p">:</span>
|
||
<span class="n">points</span><span class="p">[]:</span> <span class="mi">429398</span>
|
||
<span class="n">width</span><span class="p">:</span> <span class="mi">429398</span>
|
||
<span class="n">height</span><span class="p">:</span> <span class="mi">1</span>
|
||
<span class="n">is_dense</span><span class="p">:</span> <span class="mi">0</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
<footer>
|
||
|
||
|
||
<hr/>
|
||
|
||
<div role="contentinfo">
|
||
<p>
|
||
© Copyright
|
||
|
||
</p>
|
||
</div>
|
||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||
|
||
</footer>
|
||
|
||
</div>
|
||
</div>
|
||
|
||
</section>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<script type="text/javascript">
|
||
jQuery(function () {
|
||
SphinxRtdTheme.Navigation.enable(true);
|
||
});
|
||
</script>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</body>
|
||
</html> |