468 lines
29 KiB
HTML
468 lines
29 KiB
HTML
|
||
|
||
<!DOCTYPE html>
|
||
<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
|
||
<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
|
||
<head>
|
||
<meta charset="utf-8">
|
||
|
||
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
||
|
||
<title>Extracting indices from a PointCloud — Point Cloud Library 1.12.0 documentation</title>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<script type="text/javascript" src="_static/js/modernizr.min.js"></script>
|
||
|
||
|
||
<script type="text/javascript" id="documentation_options" data-url_root="./" src="_static/documentation_options.js"></script>
|
||
<script type="text/javascript" src="_static/jquery.js"></script>
|
||
<script type="text/javascript" src="_static/underscore.js"></script>
|
||
<script type="text/javascript" src="_static/doctools.js"></script>
|
||
<script type="text/javascript" src="_static/language_data.js"></script>
|
||
|
||
<script type="text/javascript" src="_static/js/theme.js"></script>
|
||
|
||
|
||
|
||
|
||
<link rel="stylesheet" href="_static/css/theme.css" type="text/css" />
|
||
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
|
||
<link rel="index" title="Index" href="genindex.html" />
|
||
<link rel="search" title="Search" href="search.html" />
|
||
</head>
|
||
|
||
<body class="wy-body-for-nav">
|
||
|
||
|
||
<div class="wy-grid-for-nav">
|
||
|
||
<nav data-toggle="wy-nav-shift" class="wy-nav-side">
|
||
<div class="wy-side-scroll">
|
||
<div class="wy-side-nav-search" >
|
||
|
||
|
||
|
||
<a href="index.html" class="icon icon-home"> Point Cloud Library
|
||
|
||
|
||
|
||
</a>
|
||
|
||
|
||
|
||
|
||
<div class="version">
|
||
1.12.0
|
||
</div>
|
||
|
||
|
||
|
||
|
||
<div role="search">
|
||
<form id="rtd-search-form" class="wy-form" action="search.html" method="get">
|
||
<input type="text" name="q" placeholder="Search docs" />
|
||
<input type="hidden" name="check_keywords" value="yes" />
|
||
<input type="hidden" name="area" value="default" />
|
||
</form>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
|
||
<div class="wy-menu wy-menu-vertical" data-spy="affix" role="navigation" aria-label="main navigation">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<!-- Local TOC -->
|
||
<div class="local-toc"><ul>
|
||
<li><a class="reference internal" href="#">Extracting indices from a PointCloud</a></li>
|
||
<li><a class="reference internal" href="#the-code">The code</a></li>
|
||
<li><a class="reference internal" href="#the-explanation">The explanation</a></li>
|
||
<li><a class="reference internal" href="#compiling-and-running-the-program">Compiling and running the program</a></li>
|
||
</ul>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
</div>
|
||
</nav>
|
||
|
||
<section data-toggle="wy-nav-shift" class="wy-nav-content-wrap">
|
||
|
||
|
||
<nav class="wy-nav-top" aria-label="top navigation">
|
||
|
||
<i data-toggle="wy-nav-top" class="fa fa-bars"></i>
|
||
<a href="index.html">Point Cloud Library</a>
|
||
|
||
</nav>
|
||
|
||
|
||
<div class="wy-nav-content">
|
||
|
||
<div class="rst-content">
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
<div role="navigation" aria-label="breadcrumbs navigation">
|
||
|
||
<ul class="wy-breadcrumbs">
|
||
|
||
<li><a href="index.html">Docs</a> »</li>
|
||
|
||
<li>Extracting indices from a PointCloud</li>
|
||
|
||
|
||
<li class="wy-breadcrumbs-aside">
|
||
|
||
|
||
|
||
</li>
|
||
|
||
</ul>
|
||
|
||
|
||
<hr/>
|
||
</div>
|
||
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
|
||
<div itemprop="articleBody">
|
||
|
||
<div class="section" id="extracting-indices-from-a-pointcloud">
|
||
<span id="extract-indices"></span><h1>Extracting indices from a PointCloud</h1>
|
||
<p>In this tutorial we will learn how to use an <span>ExtractIndices</span> filter to extract a subset of
|
||
points from a point cloud based on the indices output by a segmentation algorithm. In order to not complicate the
|
||
tutorial, the segmentation algorithm is not explained here. Please check
|
||
the <a class="reference internal" href="planar_segmentation.html#planar-segmentation"><span class="std std-ref">Plane model segmentation</span></a> tutorial for more information.</p>
|
||
<iframe title="Extracting indices from a PointCloud" width="480" height="390" src="https://www.youtube.com/embed/ZTK7NR1Xx4c?rel=0" frameborder="0" allowfullscreen></iframe></div>
|
||
<div class="section" id="the-code">
|
||
<h1>The code</h1>
|
||
<p>First, download the dataset <a class="reference external" href="https://raw.github.com/PointCloudLibrary/data/master/tutorials/table_scene_lms400.pcd">table_scene_lms400.pcd</a>
|
||
and save it somewhere to disk.</p>
|
||
<p>Then, create a file, let’s say, <code class="docutils literal notranslate"><span class="pre">extract_indices.cpp</span></code> in your favorite
|
||
editor, and place the following inside it:</p>
|
||
<div class="highlight-cpp notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
|
||
2
|
||
3
|
||
4
|
||
5
|
||
6
|
||
7
|
||
8
|
||
9
|
||
10
|
||
11
|
||
12
|
||
13
|
||
14
|
||
15
|
||
16
|
||
17
|
||
18
|
||
19
|
||
20
|
||
21
|
||
22
|
||
23
|
||
24
|
||
25
|
||
26
|
||
27
|
||
28
|
||
29
|
||
30
|
||
31
|
||
32
|
||
33
|
||
34
|
||
35
|
||
36
|
||
37
|
||
38
|
||
39
|
||
40
|
||
41
|
||
42
|
||
43
|
||
44
|
||
45
|
||
46
|
||
47
|
||
48
|
||
49
|
||
50
|
||
51
|
||
52
|
||
53
|
||
54
|
||
55
|
||
56
|
||
57
|
||
58
|
||
59
|
||
60
|
||
61
|
||
62
|
||
63
|
||
64
|
||
65
|
||
66
|
||
67
|
||
68
|
||
69
|
||
70
|
||
71
|
||
72
|
||
73
|
||
74
|
||
75
|
||
76
|
||
77
|
||
78
|
||
79
|
||
80
|
||
81
|
||
82
|
||
83
|
||
84
|
||
85</pre></div></td><td class="code"><div class="highlight"><pre><span></span><span class="cp">#include</span> <span class="cpf"><iostream></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/ModelCoefficients.h></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/io/pcd_io.h></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/point_types.h></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/sample_consensus/method_types.h></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/sample_consensus/model_types.h></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/segmentation/sac_segmentation.h></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/filters/voxel_grid.h></span><span class="cp"></span>
|
||
<span class="cp">#include</span> <span class="cpf"><pcl/filters/extract_indices.h></span><span class="cp"></span>
|
||
|
||
<span class="kt">int</span>
|
||
<span class="nf">main</span> <span class="p">()</span>
|
||
<span class="p">{</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PCLPointCloud2</span><span class="o">::</span><span class="n">Ptr</span> <span class="n">cloud_blob</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">PCLPointCloud2</span><span class="p">),</span> <span class="n">cloud_filtered_blob</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">PCLPointCloud2</span><span class="p">);</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PointCloud</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">>::</span><span class="n">Ptr</span> <span class="n">cloud_filtered</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">PointCloud</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span><span class="p">),</span> <span class="n">cloud_p</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">PointCloud</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span><span class="p">),</span> <span class="n">cloud_f</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">PointCloud</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span><span class="p">);</span>
|
||
|
||
<span class="c1">// Fill in the cloud data</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PCDReader</span> <span class="n">reader</span><span class="p">;</span>
|
||
<span class="n">reader</span><span class="p">.</span><span class="n">read</span> <span class="p">(</span><span class="s">"table_scene_lms400.pcd"</span><span class="p">,</span> <span class="o">*</span><span class="n">cloud_blob</span><span class="p">);</span>
|
||
|
||
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="s">"PointCloud before filtering: "</span> <span class="o"><<</span> <span class="n">cloud_blob</span><span class="o">-></span><span class="n">width</span> <span class="o">*</span> <span class="n">cloud_blob</span><span class="o">-></span><span class="n">height</span> <span class="o"><<</span> <span class="s">" data points."</span> <span class="o"><<</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
|
||
|
||
<span class="c1">// Create the filtering object: downsample the dataset using a leaf size of 1cm</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">VoxelGrid</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PCLPointCloud2</span><span class="o">></span> <span class="n">sor</span><span class="p">;</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setInputCloud</span> <span class="p">(</span><span class="n">cloud_blob</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setLeafSize</span> <span class="p">(</span><span class="mf">0.01f</span><span class="p">,</span> <span class="mf">0.01f</span><span class="p">,</span> <span class="mf">0.01f</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">filter</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_filtered_blob</span><span class="p">);</span>
|
||
|
||
<span class="c1">// Convert to the templated PointCloud</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">fromPCLPointCloud2</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_filtered_blob</span><span class="p">,</span> <span class="o">*</span><span class="n">cloud_filtered</span><span class="p">);</span>
|
||
|
||
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="s">"PointCloud after filtering: "</span> <span class="o"><<</span> <span class="n">cloud_filtered</span><span class="o">-></span><span class="n">width</span> <span class="o">*</span> <span class="n">cloud_filtered</span><span class="o">-></span><span class="n">height</span> <span class="o"><<</span> <span class="s">" data points."</span> <span class="o"><<</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
|
||
|
||
<span class="c1">// Write the downsampled version to disk</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PCDWriter</span> <span class="n">writer</span><span class="p">;</span>
|
||
<span class="n">writer</span><span class="p">.</span><span class="n">write</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="p">(</span><span class="s">"table_scene_lms400_downsampled.pcd"</span><span class="p">,</span> <span class="o">*</span><span class="n">cloud_filtered</span><span class="p">,</span> <span class="nb">false</span><span class="p">);</span>
|
||
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">ModelCoefficients</span><span class="o">::</span><span class="n">Ptr</span> <span class="n">coefficients</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">ModelCoefficients</span> <span class="p">());</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PointIndices</span><span class="o">::</span><span class="n">Ptr</span> <span class="n">inliers</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">PointIndices</span> <span class="p">());</span>
|
||
<span class="c1">// Create the segmentation object</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">SACSegmentation</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="n">seg</span><span class="p">;</span>
|
||
<span class="c1">// Optional</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setOptimizeCoefficients</span> <span class="p">(</span><span class="nb">true</span><span class="p">);</span>
|
||
<span class="c1">// Mandatory</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setModelType</span> <span class="p">(</span><span class="n">pcl</span><span class="o">::</span><span class="n">SACMODEL_PLANE</span><span class="p">);</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setMethodType</span> <span class="p">(</span><span class="n">pcl</span><span class="o">::</span><span class="n">SAC_RANSAC</span><span class="p">);</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setMaxIterations</span> <span class="p">(</span><span class="mi">1000</span><span class="p">);</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setDistanceThreshold</span> <span class="p">(</span><span class="mf">0.01</span><span class="p">);</span>
|
||
|
||
<span class="c1">// Create the filtering object</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">ExtractIndices</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="n">extract</span><span class="p">;</span>
|
||
|
||
<span class="kt">int</span> <span class="n">i</span> <span class="o">=</span> <span class="mi">0</span><span class="p">,</span> <span class="n">nr_points</span> <span class="o">=</span> <span class="p">(</span><span class="kt">int</span><span class="p">)</span> <span class="n">cloud_filtered</span><span class="o">-></span><span class="n">size</span> <span class="p">();</span>
|
||
<span class="c1">// While 30% of the original cloud is still there</span>
|
||
<span class="k">while</span> <span class="p">(</span><span class="n">cloud_filtered</span><span class="o">-></span><span class="n">size</span> <span class="p">()</span> <span class="o">></span> <span class="mf">0.3</span> <span class="o">*</span> <span class="n">nr_points</span><span class="p">)</span>
|
||
<span class="p">{</span>
|
||
<span class="c1">// Segment the largest planar component from the remaining cloud</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setInputCloud</span> <span class="p">(</span><span class="n">cloud_filtered</span><span class="p">);</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">segment</span> <span class="p">(</span><span class="o">*</span><span class="n">inliers</span><span class="p">,</span> <span class="o">*</span><span class="n">coefficients</span><span class="p">);</span>
|
||
<span class="k">if</span> <span class="p">(</span><span class="n">inliers</span><span class="o">-></span><span class="n">indices</span><span class="p">.</span><span class="n">size</span> <span class="p">()</span> <span class="o">==</span> <span class="mi">0</span><span class="p">)</span>
|
||
<span class="p">{</span>
|
||
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="s">"Could not estimate a planar model for the given dataset."</span> <span class="o"><<</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
|
||
<span class="k">break</span><span class="p">;</span>
|
||
<span class="p">}</span>
|
||
|
||
<span class="c1">// Extract the inliers</span>
|
||
<span class="n">extract</span><span class="p">.</span><span class="n">setInputCloud</span> <span class="p">(</span><span class="n">cloud_filtered</span><span class="p">);</span>
|
||
<span class="n">extract</span><span class="p">.</span><span class="n">setIndices</span> <span class="p">(</span><span class="n">inliers</span><span class="p">);</span>
|
||
<span class="n">extract</span><span class="p">.</span><span class="n">setNegative</span> <span class="p">(</span><span class="nb">false</span><span class="p">);</span>
|
||
<span class="n">extract</span><span class="p">.</span><span class="n">filter</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_p</span><span class="p">);</span>
|
||
<span class="n">std</span><span class="o">::</span><span class="n">cerr</span> <span class="o"><<</span> <span class="s">"PointCloud representing the planar component: "</span> <span class="o"><<</span> <span class="n">cloud_p</span><span class="o">-></span><span class="n">width</span> <span class="o">*</span> <span class="n">cloud_p</span><span class="o">-></span><span class="n">height</span> <span class="o"><<</span> <span class="s">" data points."</span> <span class="o"><<</span> <span class="n">std</span><span class="o">::</span><span class="n">endl</span><span class="p">;</span>
|
||
|
||
<span class="n">std</span><span class="o">::</span><span class="n">stringstream</span> <span class="n">ss</span><span class="p">;</span>
|
||
<span class="n">ss</span> <span class="o"><<</span> <span class="s">"table_scene_lms400_plane_"</span> <span class="o"><<</span> <span class="n">i</span> <span class="o"><<</span> <span class="s">".pcd"</span><span class="p">;</span>
|
||
<span class="n">writer</span><span class="p">.</span><span class="n">write</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="p">(</span><span class="n">ss</span><span class="p">.</span><span class="n">str</span> <span class="p">(),</span> <span class="o">*</span><span class="n">cloud_p</span><span class="p">,</span> <span class="nb">false</span><span class="p">);</span>
|
||
|
||
<span class="c1">// Create the filtering object</span>
|
||
<span class="n">extract</span><span class="p">.</span><span class="n">setNegative</span> <span class="p">(</span><span class="nb">true</span><span class="p">);</span>
|
||
<span class="n">extract</span><span class="p">.</span><span class="n">filter</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_f</span><span class="p">);</span>
|
||
<span class="n">cloud_filtered</span><span class="p">.</span><span class="n">swap</span> <span class="p">(</span><span class="n">cloud_f</span><span class="p">);</span>
|
||
<span class="n">i</span><span class="o">++</span><span class="p">;</span>
|
||
<span class="p">}</span>
|
||
|
||
<span class="k">return</span> <span class="p">(</span><span class="mi">0</span><span class="p">);</span>
|
||
<span class="p">}</span>
|
||
</pre></div>
|
||
</td></tr></table></div>
|
||
</div>
|
||
<div class="section" id="the-explanation">
|
||
<h1>The explanation</h1>
|
||
<p>Now, let’s break down the code piece by piece, skipping the obvious.</p>
|
||
<p>After the data has been loaded from the input .PCD file, we create a
|
||
<span>VoxelGrid</span> filter, to downsample the data. The rationale behind data
|
||
downsampling here is just to speed things up – less points means less time
|
||
needed to spend within the segmentation loop.</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="n">pcl</span><span class="o">::</span><span class="n">VoxelGrid</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PCLPointCloud2</span><span class="o">></span> <span class="n">sor</span><span class="p">;</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setInputCloud</span> <span class="p">(</span><span class="n">cloud_blob</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">setLeafSize</span> <span class="p">(</span><span class="mf">0.01f</span><span class="p">,</span> <span class="mf">0.01f</span><span class="p">,</span> <span class="mf">0.01f</span><span class="p">);</span>
|
||
<span class="n">sor</span><span class="p">.</span><span class="n">filter</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_filtered_blob</span><span class="p">);</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>The next block of code deals with the parametric segmentation. To keep the
|
||
tutorial simple, its explanation will be skipped for now. Please see the
|
||
<strong>segmentation</strong> tutorials (in particular <a class="reference internal" href="planar_segmentation.html#planar-segmentation"><span class="std std-ref">Plane model segmentation</span></a>) for more
|
||
information.</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="n">pcl</span><span class="o">::</span><span class="n">ModelCoefficients</span><span class="o">::</span><span class="n">Ptr</span> <span class="n">coefficients</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">ModelCoefficients</span> <span class="p">());</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">PointIndices</span><span class="o">::</span><span class="n">Ptr</span> <span class="n">inliers</span> <span class="p">(</span><span class="k">new</span> <span class="n">pcl</span><span class="o">::</span><span class="n">PointIndices</span> <span class="p">());</span>
|
||
<span class="c1">// Create the segmentation object</span>
|
||
<span class="n">pcl</span><span class="o">::</span><span class="n">SACSegmentation</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="n">seg</span><span class="p">;</span>
|
||
<span class="c1">// Optional</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setOptimizeCoefficients</span> <span class="p">(</span><span class="nb">true</span><span class="p">);</span>
|
||
<span class="c1">// Mandatory</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setModelType</span> <span class="p">(</span><span class="n">pcl</span><span class="o">::</span><span class="n">SACMODEL_PLANE</span><span class="p">);</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setMethodType</span> <span class="p">(</span><span class="n">pcl</span><span class="o">::</span><span class="n">SAC_RANSAC</span><span class="p">);</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setMaxIterations</span> <span class="p">(</span><span class="mi">1000</span><span class="p">);</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">setDistanceThreshold</span> <span class="p">(</span><span class="mf">0.01</span><span class="p">);</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>The line</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="n">pcl</span><span class="o">::</span><span class="n">ExtractIndices</span><span class="o"><</span><span class="n">pcl</span><span class="o">::</span><span class="n">PointXYZ</span><span class="o">></span> <span class="n">extract</span><span class="p">;</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>and</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="n">extract</span><span class="p">.</span><span class="n">setInputCloud</span> <span class="p">(</span><span class="n">cloud_filtered</span><span class="p">);</span>
|
||
<span class="n">extract</span><span class="p">.</span><span class="n">setIndices</span> <span class="p">(</span><span class="n">inliers</span><span class="p">);</span>
|
||
<span class="n">extract</span><span class="p">.</span><span class="n">setNegative</span> <span class="p">(</span><span class="nb">false</span><span class="p">);</span>
|
||
<span class="n">extract</span><span class="p">.</span><span class="n">filter</span> <span class="p">(</span><span class="o">*</span><span class="n">cloud_p</span><span class="p">);</span>
|
||
</pre></div>
|
||
</div>
|
||
<p>represent the actual indices <span>extraction filter</span>. To process multiple models, we
|
||
run the process in a loop, and after each model is extracted, we go back to
|
||
obtain the remaining points, and iterate. The <em>inliers</em> are obtained from the segmentation process, as follows:</p>
|
||
<div class="highlight-cpp notranslate"><div class="highlight"><pre><span></span> <span class="n">seg</span><span class="p">.</span><span class="n">setInputCloud</span> <span class="p">(</span><span class="n">cloud_filtered</span><span class="p">);</span>
|
||
<span class="n">seg</span><span class="p">.</span><span class="n">segment</span> <span class="p">(</span><span class="o">*</span><span class="n">inliers</span><span class="p">,</span> <span class="o">*</span><span class="n">coefficients</span><span class="p">);</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
<div class="section" id="compiling-and-running-the-program">
|
||
<h1>Compiling and running the program</h1>
|
||
<p>Add the following lines to your CMakeLists.txt file:</p>
|
||
<div class="highlight-cmake notranslate"><table class="highlighttable"><tr><td class="linenos"><div class="linenodiv"><pre> 1
|
||
2
|
||
3
|
||
4
|
||
5
|
||
6
|
||
7
|
||
8
|
||
9
|
||
10
|
||
11
|
||
12</pre></div></td><td class="code"><div class="highlight"><pre><span></span><span class="nb">cmake_minimum_required</span><span class="p">(</span><span class="s">VERSION</span> <span class="s">3.5</span> <span class="s">FATAL_ERROR</span><span class="p">)</span>
|
||
|
||
<span class="nb">project</span><span class="p">(</span><span class="s">extract_indices</span><span class="p">)</span>
|
||
|
||
<span class="nb">find_package</span><span class="p">(</span><span class="s">PCL</span> <span class="s">1.2</span> <span class="s">REQUIRED</span><span class="p">)</span>
|
||
|
||
<span class="nb">include_directories</span><span class="p">(</span><span class="o">${</span><span class="nv">PCL_INCLUDE_DIRS</span><span class="o">}</span><span class="p">)</span>
|
||
<span class="nb">link_directories</span><span class="p">(</span><span class="o">${</span><span class="nv">PCL_LIBRARY_DIRS</span><span class="o">}</span><span class="p">)</span>
|
||
<span class="nb">add_definitions</span><span class="p">(</span><span class="o">${</span><span class="nv">PCL_DEFINITIONS</span><span class="o">}</span><span class="p">)</span>
|
||
|
||
<span class="nb">add_executable</span> <span class="p">(</span><span class="s">extract_indices</span> <span class="s">extract_indices.cpp</span><span class="p">)</span>
|
||
<span class="nb">target_link_libraries</span> <span class="p">(</span><span class="s">extract_indices</span> <span class="o">${</span><span class="nv">PCL_LIBRARIES</span><span class="o">}</span><span class="p">)</span>
|
||
</pre></div>
|
||
</td></tr></table></div>
|
||
<p>After you have made the executable, you can run it. Simply do:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span>$ ./extract_indices
|
||
</pre></div>
|
||
</div>
|
||
<p>You will see something similar to:</p>
|
||
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="n">PointCloud</span> <span class="n">before</span> <span class="n">filtering</span><span class="p">:</span> <span class="mi">460400</span> <span class="n">data</span> <span class="n">points</span><span class="o">.</span>
|
||
<span class="n">PointCloud</span> <span class="n">after</span> <span class="n">filtering</span><span class="p">:</span> <span class="mi">41049</span> <span class="n">data</span> <span class="n">points</span><span class="o">.</span>
|
||
<span class="n">PointCloud</span> <span class="n">representing</span> <span class="n">the</span> <span class="n">planar</span> <span class="n">component</span><span class="p">:</span> <span class="mi">20164</span> <span class="n">data</span> <span class="n">points</span><span class="o">.</span>
|
||
<span class="n">PointCloud</span> <span class="n">representing</span> <span class="n">the</span> <span class="n">planar</span> <span class="n">component</span><span class="p">:</span> <span class="mi">12129</span> <span class="n">data</span> <span class="n">points</span><span class="o">.</span>
|
||
</pre></div>
|
||
</div>
|
||
</div>
|
||
|
||
|
||
</div>
|
||
|
||
</div>
|
||
<footer>
|
||
|
||
|
||
<hr/>
|
||
|
||
<div role="contentinfo">
|
||
<p>
|
||
© Copyright
|
||
|
||
</p>
|
||
</div>
|
||
Built with <a href="http://sphinx-doc.org/">Sphinx</a> using a <a href="https://github.com/rtfd/sphinx_rtd_theme">theme</a> provided by <a href="https://readthedocs.org">Read the Docs</a>.
|
||
|
||
</footer>
|
||
|
||
</div>
|
||
</div>
|
||
|
||
</section>
|
||
|
||
</div>
|
||
|
||
|
||
|
||
<script type="text/javascript">
|
||
jQuery(function () {
|
||
SphinxRtdTheme.Navigation.enable(true);
|
||
});
|
||
</script>
|
||
|
||
|
||
|
||
|
||
|
||
|
||
</body>
|
||
</html> |