460 lines
15 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2014-, Open Perception.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#pragma once
#include <pcl/common/intensity.h>
#include <pcl/common/transformation_from_correspondences.h>
#include <pcl/tracking/tracker.h>
#include <pcl/memory.h>
#include <pcl/pcl_macros.h>
#include <pcl/point_types.h>
namespace pcl {
namespace tracking {
/** Pyramidal Kanade Lucas Tomasi tracker.
* This is an implementation of the Pyramidal Kanade Lucas Tomasi tracker that
* operates on organized 3D keypoints with color/intensity information (this is
* the default behaviour but you can alterate it by providing another operator
* as second template argument). It is an affine tracker that iteratively
* computes the optical flow to find the best guess for a point p at t given its
* location at t-1. User is advised to respect the Tomasi condition: the
* response computed is the maximum eigenvalue of the second moment matrix but
* no restrictin are applied to points to track so you can use a detector of
* your choice to indicate points to track.
*
* \author Nizar Sallem
*/
template <typename PointInT,
typename IntensityT = pcl::common::IntensityFieldAccessor<PointInT>>
class PyramidalKLTTracker : public Tracker<PointInT, Eigen::Affine3f> {
public:
using TrackerBase = pcl::tracking::Tracker<PointInT, Eigen::Affine3f>;
using PointCloudIn = typename TrackerBase::PointCloudIn;
using PointCloudInPtr = typename PointCloudIn::Ptr;
using PointCloudInConstPtr = typename PointCloudIn::ConstPtr;
using FloatImage = pcl::PointCloud<float>;
using FloatImagePtr = FloatImage::Ptr;
using FloatImageConstPtr = FloatImage::ConstPtr;
using Ptr = shared_ptr<PyramidalKLTTracker<PointInT, IntensityT>>;
using ConstPtr = shared_ptr<const PyramidalKLTTracker<PointInT, IntensityT>>;
using TrackerBase::indices_;
using TrackerBase::input_;
using TrackerBase::tracker_name_;
/** Constructor */
PyramidalKLTTracker(int nb_levels = 5,
int tracking_window_width = 7,
int tracking_window_height = 7)
: ref_()
, nb_levels_(nb_levels)
, track_width_(tracking_window_width)
, track_height_(tracking_window_height)
, threads_(0)
, initialized_(false)
{
tracker_name_ = "PyramidalKLTTracker";
accuracy_ = 0.1;
epsilon_ = 1e-3;
max_iterations_ = 10;
keypoints_nbr_ = 100;
min_eigenvalue_threshold_ = 1e-4;
kernel_ << 1.f / 16, 1.f / 4, 3.f / 8, 1.f / 4, 1.f / 16;
kernel_size_2_ = kernel_.size() / 2;
kernel_last_ = kernel_.size() - 1;
}
/** Destructor */
~PyramidalKLTTracker() {}
/** \brief Set the number of pyramid levels
* \param levels desired number of pyramid levels
*/
inline void
setNumberOfPyramidLevels(int levels)
{
nb_levels_ = levels;
}
/** \return the number of pyramid levels */
inline int
getNumberOfPyramidLevels() const
{
return (nb_levels_);
}
/** Set accuracy
* \param[in] accuracy desired accuracy.
*/
inline void
setAccuracy(float accuracy)
{
accuracy_ = accuracy;
}
/** \return the accuracy */
inline float
getAccuracy() const
{
return (accuracy_);
}
/** Set epsilon
* \param[in] epsilon desired epsilon.
*/
inline void
setEpsilon(float epsilon)
{
epsilon_ = epsilon;
}
/** \return the epsilon */
inline float
getEpsilon() const
{
return (epsilon_);
}
/** \brief Set the maximum number of points to track after sorting detected keypoints
* according to their response measure.
* \param[in] number the desired number of points to detect.
*/
inline void
setNumberOfKeypoints(std::size_t number)
{
keypoints_nbr_ = number;
}
/** \return the maximum number of keypoints to keep */
inline std::size_t
getNumberOfKeypoints()
{
return (keypoints_nbr_);
}
/** \brief set the tracking window size
* \param[in] width the tracking window width
* \param[in] height the tracking window height
*/
inline void
setTrackingWindowSize(int width, int height);
/** \brief Set tracking window width */
inline void
setTrackingWindowWidth(int width)
{
track_width_ = width;
};
/** \return the tracking window size */
inline int
getTrackingWindowWidth()
{
return (track_width_);
}
/** \brief Set tracking window height */
inline void
setTrackingWindowHeight(int height)
{
track_height_ = height;
};
/** \return the tracking window size */
inline int
getTrackingWindowHeight()
{
return (track_height_);
}
/** \brief Initialize the scheduler and set the number of threads to use.
* \param nr_threads the number of hardware threads to use (0 sets the value
* back to automatic).
*/
inline void
setNumberOfThreads(unsigned int nr_threads = 0)
{
threads_ = nr_threads;
}
/** \brief Get a pointer of the cloud at t-1. */
inline PointCloudInConstPtr
getReferenceCloud() const
{
return (ref_);
}
/** \brief Set the maximum number of iterations in the Lucas Kanade loop.
* \param[in] max the desired maximum number of iterations
*/
inline void
setMaxIterationsNumber(unsigned int max)
{
max_iterations_ = max;
}
/** \return the maximum iterations number */
inline unsigned int
getMaxIterationsNumber() const
{
return (max_iterations_);
}
/** \brief Provide a pointer to points to track.
* \param points the const boost shared pointer to a PointIndices message
*/
inline void
setPointsToTrack(const pcl::PointIndicesConstPtr& points);
/** \brief Provide a pointer to points to track.
* \param points the const boost shared pointer to a PointIndices message
*/
inline void
setPointsToTrack(const pcl::PointCloud<pcl::PointUV>::ConstPtr& points);
/** \return a pointer to the points successfully tracked. */
inline pcl::PointCloud<pcl::PointUV>::ConstPtr
getTrackedPoints() const
{
return (keypoints_);
};
/** \return the status of points to track.
* Status == 0 --> points successfully tracked;
* Status < 0 --> point is lost;
* Status == -1 --> point is out of bond;
* Status == -2 --> optical flow can not be computed for this point.
*/
PCL_DEPRECATED(1, 15, "use getStatusOfPointsToTrack instead")
inline pcl::PointIndicesConstPtr
getPointsToTrackStatus() const
{
pcl::PointIndicesPtr res(new pcl::PointIndices);
res->indices.insert(
res->indices.end(), keypoints_status_->begin(), keypoints_status_->end());
return (res);
}
/** \return the status of points to track.
* Status == 0 --> points successfully tracked;
* Status < 0 --> point is lost;
* Status == -1 --> point is out of bond;
* Status == -2 --> optical flow can not be computed for this point.
*/
inline pcl::shared_ptr<const std::vector<int>>
getStatusOfPointsToTrack() const
{
return (keypoints_status_);
}
/** \brief Return the computed transformation from tracked points. */
Eigen::Affine3f
getResult() const override
{
return (motion_);
}
/** \return initialization state */
bool
getInitialized() const
{
return (initialized_);
}
protected:
bool
initCompute() override;
/** \brief compute Scharr derivatives of a source cloud.
* \param[in] src the image for which gradients are to be computed
* \param[out] grad_x image gradient along X direction
* \param[out] grad_y image gradient along Y direction
*/
void
derivatives(const FloatImage& src, FloatImage& grad_x, FloatImage& grad_y) const;
/** \brief downsample input
* \param[in] input the image to downsample
* \param[out] output the downsampled image
*/
void
downsample(const FloatImageConstPtr& input, FloatImageConstPtr& output) const;
/** \brief downsample input and compute output gradients.
* \param[in] input the image to downsample
* \param[out] output the downsampled image
* \param[out] output_grad_x downsampled image gradient along X direction
* \param[out] output_grad_y downsampled image gradient along Y direction
*/
void
downsample(const FloatImageConstPtr& input,
FloatImageConstPtr& output,
FloatImageConstPtr& output_grad_x,
FloatImageConstPtr& output_grad_y) const;
/** \brief Separately convolve image with decomposable convolution kernel.
* \param[in] input input the image to convolve
* \param[out] output output the convolved image
*/
void
convolve(const FloatImageConstPtr& input, FloatImage& output) const;
/** \brief Convolve image columns.
* \param[in] input input the image to convolve
* \param[out] output output the convolved image
*/
void
convolveCols(const FloatImageConstPtr& input, FloatImage& output) const;
/** \brief Convolve image rows.
* \param[in] input input the image to convolve
* \param[out] output output the convolved image
*/
void
convolveRows(const FloatImageConstPtr& input, FloatImage& output) const;
/** \brief extract the patch from the previous image, previous image gradients
* surrounding pixel alocation while interpolating image and gradients data
* and compute covariation matrix of derivatives.
* \param[in] img original image
* \param[in] grad_x original image gradient along X direction
* \param[in] grad_y original image gradient along Y direction
* \param[in] location pixel at the center of the patch
* \param[in] weights bilinear interpolation weights at this location computed from
* subpixel location
* \param[out] win patch with interpolated intensity values
* \param[out] grad_x_win patch with interpolated gradient along X values
* \param[out] grad_y_win patch with interpolated gradient along Y values
* \param[out] covariance covariance matrix coefficients
*/
virtual void
spatialGradient(const FloatImage& img,
const FloatImage& grad_x,
const FloatImage& grad_y,
const Eigen::Array2i& location,
const Eigen::Array4f& weights,
Eigen::ArrayXXf& win,
Eigen::ArrayXXf& grad_x_win,
Eigen::ArrayXXf& grad_y_win,
Eigen::Array3f& covariance) const;
void
mismatchVector(const Eigen::ArrayXXf& prev,
const Eigen::ArrayXXf& prev_grad_x,
const Eigen::ArrayXXf& prev_grad_y,
const FloatImage& next,
const Eigen::Array2i& location,
const Eigen::Array4f& weights,
Eigen::Array2f& b) const;
/** \brief Compute the pyramidal representation of an image.
* \param[in] input the input cloud
* \param[out] pyramid computed pyramid levels along with their respective
* gradients
* \param[in] border_type
*/
virtual void
computePyramids(const PointCloudInConstPtr& input,
std::vector<FloatImageConstPtr>& pyramid,
pcl::InterpolationType border_type) const;
virtual void
track(const PointCloudInConstPtr& previous_input,
const PointCloudInConstPtr& current_input,
const std::vector<FloatImageConstPtr>& previous_pyramid,
const std::vector<FloatImageConstPtr>& current_pyramid,
const pcl::PointCloud<pcl::PointUV>::ConstPtr& previous_keypoints,
pcl::PointCloud<pcl::PointUV>::Ptr& current_keypoints,
std::vector<int>& status,
Eigen::Affine3f& motion) const;
void
computeTracking() override;
/** \brief input pyranid at t-1 */
std::vector<FloatImageConstPtr> ref_pyramid_;
/** \brief point cloud at t-1 */
PointCloudInConstPtr ref_;
/** \brief number of pyramid levels */
int nb_levels_;
/** \brief detected keypoints 2D coordinates */
pcl::PointCloud<pcl::PointUV>::ConstPtr keypoints_;
/** \brief status of keypoints of t-1 at t */
pcl::shared_ptr<std::vector<int>> keypoints_status_;
/** \brief number of points to detect */
std::size_t keypoints_nbr_;
/** \brief tracking width */
int track_width_;
/** \brief half of tracking window width */
int track_width_2_;
/** \brief tracking height */
int track_height_;
/** \brief half of tracking window height */
int track_height_2_;
/** \brief maximum number of iterations */
unsigned int max_iterations_;
/** \brief accuracy criterion to stop iterating */
float accuracy_;
float min_eigenvalue_threshold_;
/** \brief epsilon for subpixel computation */
float epsilon_;
float max_residue_;
/** \brief number of hardware threads */
unsigned int threads_;
/** \brief intensity accessor */
IntensityT intensity_;
/** \brief is the tracker initialized ? */
bool initialized_;
/** \brief compute transformation from successfully tracked points */
pcl::TransformationFromCorrespondences transformation_computer_;
/** \brief computed transformation between tracked points */
Eigen::Affine3f motion_;
/** \brief smoothing kernel */
Eigen::Array<float, 5, 1> kernel_;
/** \brief smoothing kernel half size */
int kernel_size_2_;
/** \brief index of last element in kernel */
int kernel_last_;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
} // namespace tracking
} // namespace pcl
#include <pcl/tracking/impl/pyramidal_klt.hpp>