228 lines
8.1 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2012-, Open Perception, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
*
*/
#pragma once
//#include <opencv2/core/core.hpp>
//#include "v4r/TomGine/tgTomGine.h"
//#include "v4r/NurbsConvertion/NurbsConvertion.h"
// remove multiple #defines from xlib and OpenMesh
#undef True
#undef False
#undef None
#undef Status
#include <pcl/surface/on_nurbs/fitting_surface_pdm.h>
#include <pcl/surface/on_nurbs/nurbs_data.h>
#include <pcl/memory.h>
#include <pcl/pcl_base.h>
#include <pcl/pcl_macros.h>
#include <pcl/point_types.h>
//#include "v4r/NurbsConvertion/DataLoading.h"
namespace pcl
{
namespace on_nurbs
{
class SequentialFitter
{
public:
struct Parameter
{
int order;
int refinement;
int iterationsQuad;
int iterationsBoundary;
int iterationsAdjust;
int iterationsInterior;
double forceBoundary;
double forceBoundaryInside;
double forceInterior;
double stiffnessBoundary;
double stiffnessInterior;
int resolution;
Parameter (int order = 3, int refinement = 1, int iterationsQuad = 5, int iterationsBoundary = 5,
int iterationsAdjust = 5, int iterationsInterior = 2, double forceBoundary = 200.0,
double forceBoundaryInside = 400.0, double forceInterior = 1.0, double stiffnessBoundary = 20.0,
double stiffnessInterior = 0.1, int resolution = 16);
};
private:
Parameter m_params;
NurbsDataSurface m_data;
ON_NurbsSurface m_nurbs;
ON_3dPoint m_corners[4];
pcl::PointCloud<pcl::PointXYZRGB>::Ptr m_cloud;
pcl::PointIndices::Ptr m_boundary_indices;
pcl::PointIndices::Ptr m_interior_indices;
Eigen::Matrix4d m_intrinsic;
Eigen::Matrix4d m_extrinsic;
bool m_have_cloud;
bool m_have_corners;
int m_surf_id;
void
compute_quadfit ();
void
compute_refinement (FittingSurface* fitting) const;
void
compute_boundary (FittingSurface* fitting) const;
void
compute_interior (FittingSurface* fitting) const;
Eigen::Vector2d
project (const Eigen::Vector3d &pt);
bool
is_back_facing (const Eigen::Vector3d &v0,
const Eigen::Vector3d &v1,
const Eigen::Vector3d &v2,
const Eigen::Vector3d &v3);
public:
SequentialFitter (Parameter p = Parameter ());
inline void
setParams (const Parameter &p)
{
m_params = p;
}
/** \brief Set input point cloud **/
void
setInputCloud (pcl::PointCloud<pcl::PointXYZRGB>::Ptr &pcl_cloud);
/** \brief Set boundary points of input point cloud **/
void
setBoundary (pcl::PointIndices::Ptr &pcl_cloud_indices);
/** \brief Set interior points of input point cloud **/
void
setInterior (pcl::PointIndices::Ptr &pcl_cloud_indices);
/** \brief Set corner points of input point cloud **/
void
setCorners (pcl::PointIndices::Ptr &corners, bool flip_on_demand = true);
/** \brief Set camera- and world matrices, for projection and back-face detection
* \param[in] intrinsic The camera projection matrix.
* \param[in] intrinsic The world matrix.*/
void
setProjectionMatrix (const Eigen::Matrix4d &intrinsic,
const Eigen::Matrix4d &extrinsic);
/** \brief Compute point cloud and fit (multiple) models */
ON_NurbsSurface
compute (bool assemble = false);
/** \brief Compute boundary points and fit (multiple) models
* (without interior points - minimal curvature surface) */
ON_NurbsSurface
compute_boundary (const ON_NurbsSurface &nurbs);
/** \brief Compute interior points and fit (multiple) models
* (without boundary points)*/
ON_NurbsSurface
compute_interior (const ON_NurbsSurface &nurbs);
/** \brief Get resulting NURBS surface. */
inline ON_NurbsSurface
getNurbs ()
{
return m_nurbs;
}
/** \brief Get error of each interior point (L2-norm of point to closest point on surface) and square-error */
void
getInteriorError (std::vector<double> &error) const;
/** \brief Get error of each boundary point (L2-norm of point to closest point on surface) and square-error */
void
getBoundaryError (std::vector<double> &error) const;
/** \brief Get parameter of each interior point */
void
getInteriorParams (std::vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d> > &params) const;
/** \brief Get parameter of each boundary point */
void
getBoundaryParams (std::vector<Eigen::Vector2d, Eigen::aligned_allocator<Eigen::Vector2d> > &params) const;
/** \brief get the normals to the interior points given by setInterior() */
void
getInteriorNormals (std::vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d> > &normal) const;
/** \brief get the normals to the boundary points given by setBoundary() */
void
getBoundaryNormals (std::vector<Eigen::Vector3d, Eigen::aligned_allocator<Eigen::Vector3d> > &normals) const;
/** \brief Get the closest point on a NURBS from a point pt in parameter space
* \param[in] nurbs The NURBS surface
* \param[in] pt A point in 3D from which the closest point is calculated
* \param[out] params The closest point on the NURBS in parameter space
* \param[in] maxSteps Maximum iteration steps
* \param[in] accuracy Accuracy below which the iterations stop */
static void
getClosestPointOnNurbs (ON_NurbsSurface nurbs,
const Eigen::Vector3d &pt,
Eigen::Vector2d& params,
int maxSteps = 100,
double accuracy = 1e-4);
/** \brief Growing algorithm (TODO: under construction) */
ON_NurbsSurface
grow (float max_dist = 1.0f, float max_angle = M_PI_4, unsigned min_length = 0, unsigned max_length = 10);
/** \brief Convert point-cloud */
static unsigned
PCL2ON (pcl::PointCloud<pcl::PointXYZRGB>::Ptr &pcl_cloud, const pcl::Indices &indices, vector_vec3d &cloud);
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
}
}