522 lines
19 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author : jpapon@gmail.com
* Email : jpapon@gmail.com
*
*/
#pragma once
#include <boost/version.hpp>
#include <pcl/features/normal_3d.h>
#include <pcl/memory.h>
#include <pcl/pcl_base.h>
#include <pcl/pcl_macros.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <pcl/octree/octree_search.h>
#include <pcl/octree/octree_pointcloud_adjacency.h>
#include <pcl/search/search.h>
#include <boost/ptr_container/ptr_list.hpp> // for ptr_list
//DEBUG TODO REMOVE
#include <pcl/common/time.h>
namespace pcl
{
/** \brief Supervoxel container class - stores a cluster extracted using supervoxel clustering
*/
template <typename PointT>
class Supervoxel
{
public:
Supervoxel () :
voxels_ (new pcl::PointCloud<PointT> ()),
normals_ (new pcl::PointCloud<Normal> ())
{ }
using Ptr = shared_ptr<Supervoxel<PointT> >;
using ConstPtr = shared_ptr<const Supervoxel<PointT> >;
/** \brief Gets the centroid of the supervoxel
* \param[out] centroid_arg centroid of the supervoxel
*/
void
getCentroidPoint (PointXYZRGBA &centroid_arg)
{
centroid_arg = centroid_;
}
/** \brief Gets the point normal for the supervoxel
* \param[out] normal_arg Point normal of the supervoxel
* \note This isn't an average, it is a normal computed using all of the voxels in the supervoxel as support
*/
void
getCentroidPointNormal (PointNormal &normal_arg)
{
normal_arg.x = centroid_.x;
normal_arg.y = centroid_.y;
normal_arg.z = centroid_.z;
normal_arg.normal_x = normal_.normal_x;
normal_arg.normal_y = normal_.normal_y;
normal_arg.normal_z = normal_.normal_z;
normal_arg.curvature = normal_.curvature;
}
/** \brief The normal calculated for the voxels contained in the supervoxel */
pcl::Normal normal_;
/** \brief The centroid of the supervoxel - average voxel */
pcl::PointXYZRGBA centroid_;
/** \brief A Pointcloud of the voxels in the supervoxel */
typename pcl::PointCloud<PointT>::Ptr voxels_;
/** \brief A Pointcloud of the normals for the points in the supervoxel */
typename pcl::PointCloud<Normal>::Ptr normals_;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
/** \brief Implements a supervoxel algorithm based on voxel structure, normals, and rgb values
* \note Supervoxels are oversegmented volumetric patches (usually surfaces)
* \note Usually, color isn't needed (and can be detrimental)- spatial structure is mainly used
* - J. Papon, A. Abramov, M. Schoeler, F. Woergoetter
* Voxel Cloud Connectivity Segmentation - Supervoxels from PointClouds
* In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2013
* \ingroup segmentation
* \author Jeremie Papon (jpapon@gmail.com)
*/
template <typename PointT>
class PCL_EXPORTS SupervoxelClustering : public pcl::PCLBase<PointT>
{
//Forward declaration of friended helper class
class SupervoxelHelper;
friend class SupervoxelHelper;
public:
/** \brief VoxelData is a structure used for storing data within a pcl::octree::OctreePointCloudAdjacencyContainer
* \note It stores xyz, rgb, normal, distance, an index, and an owner.
*/
class VoxelData
{
public:
VoxelData ():
xyz_ (0.0f, 0.0f, 0.0f),
rgb_ (0.0f, 0.0f, 0.0f),
normal_ (0.0f, 0.0f, 0.0f, 0.0f),
curvature_ (0.0f),
distance_(0),
idx_(0),
owner_ (nullptr)
{}
/** \brief Gets the data of in the form of a point
* \param[out] point_arg Will contain the point value of the voxeldata
*/
void
getPoint (PointT &point_arg) const;
/** \brief Gets the data of in the form of a normal
* \param[out] normal_arg Will contain the normal value of the voxeldata
*/
void
getNormal (Normal &normal_arg) const;
Eigen::Vector3f xyz_;
Eigen::Vector3f rgb_;
Eigen::Vector4f normal_;
float curvature_;
float distance_;
int idx_;
SupervoxelHelper* owner_;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
using LeafContainerT = pcl::octree::OctreePointCloudAdjacencyContainer<PointT, VoxelData>;
using LeafVectorT = std::vector<LeafContainerT *>;
using PointCloudT = pcl::PointCloud<PointT>;
using NormalCloudT = pcl::PointCloud<Normal>;
using OctreeAdjacencyT = pcl::octree::OctreePointCloudAdjacency<PointT, LeafContainerT>;
using OctreeSearchT = pcl::octree::OctreePointCloudSearch<PointT>;
using KdTreeT = pcl::search::KdTree<PointT>;
using IndicesPtr = pcl::IndicesPtr;
using PCLBase <PointT>::initCompute;
using PCLBase <PointT>::deinitCompute;
using PCLBase <PointT>::input_;
using VoxelAdjacencyList = boost::adjacency_list<boost::setS, boost::setS, boost::undirectedS, std::uint32_t, float>;
using VoxelID = VoxelAdjacencyList::vertex_descriptor;
using EdgeID = VoxelAdjacencyList::edge_descriptor;
public:
/** \brief Constructor that sets default values for member variables.
* \param[in] voxel_resolution The resolution (in meters) of voxels used
* \param[in] seed_resolution The average size (in meters) of resulting supervoxels
*/
SupervoxelClustering (float voxel_resolution, float seed_resolution);
/** \brief This destructor destroys the cloud, normals and search method used for
* finding neighbors. In other words it frees memory.
*/
~SupervoxelClustering ();
/** \brief Set the resolution of the octree voxels */
void
setVoxelResolution (float resolution);
/** \brief Get the resolution of the octree voxels */
float
getVoxelResolution () const;
/** \brief Set the resolution of the octree seed voxels */
void
setSeedResolution (float seed_resolution);
/** \brief Get the resolution of the octree seed voxels */
float
getSeedResolution () const;
/** \brief Set the importance of color for supervoxels */
void
setColorImportance (float val);
/** \brief Set the importance of spatial distance for supervoxels */
void
setSpatialImportance (float val);
/** \brief Set the importance of scalar normal product for supervoxels */
void
setNormalImportance (float val);
/** \brief Set whether or not to use the single camera transform
* \note By default it will be used for organized clouds, but not for unorganized - this parameter will override that behavior
* The single camera transform scales bin size so that it increases exponentially with depth (z dimension).
* This is done to account for the decreasing point density found with depth when using an RGB-D camera.
* Without the transform, beyond a certain depth adjacency of voxels breaks down unless the voxel size is set to a large value.
* Using the transform allows preserving detail up close, while allowing adjacency at distance.
* The specific transform used here is:
* x /= z; y /= z; z = ln(z);
* This transform is applied when calculating the octree bins in OctreePointCloudAdjacency
*/
void
setUseSingleCameraTransform (bool val);
/** \brief This method launches the segmentation algorithm and returns the supervoxels that were
* obtained during the segmentation.
* \param[out] supervoxel_clusters A map of labels to pointers to supervoxel structures
*/
virtual void
extract (std::map<std::uint32_t,typename Supervoxel<PointT>::Ptr > &supervoxel_clusters);
/** \brief This method sets the cloud to be supervoxelized
* \param[in] cloud The cloud to be supervoxelize
*/
void
setInputCloud (const typename pcl::PointCloud<PointT>::ConstPtr& cloud) override;
/** \brief This method sets the normals to be used for supervoxels (should be same size as input cloud)
* \param[in] normal_cloud The input normals
*/
virtual void
setNormalCloud (typename NormalCloudT::ConstPtr normal_cloud);
/** \brief This method refines the calculated supervoxels - may only be called after extract
* \param[in] num_itr The number of iterations of refinement to be done (2 or 3 is usually sufficient)
* \param[out] supervoxel_clusters The resulting refined supervoxels
*/
virtual void
refineSupervoxels (int num_itr, std::map<std::uint32_t,typename Supervoxel<PointT>::Ptr > &supervoxel_clusters);
////////////////////////////////////////////////////////////
/** \brief Returns a deep copy of the voxel centroid cloud */
typename pcl::PointCloud<PointT>::Ptr
getVoxelCentroidCloud () const;
/** \brief Returns labeled cloud
* Points that belong to the same supervoxel have the same label.
* Labels for segments start from 1, unlabled points have label 0
*/
typename pcl::PointCloud<PointXYZL>::Ptr
getLabeledCloud () const;
/** \brief Returns labeled voxelized cloud
* Points that belong to the same supervoxel have the same label.
* Labels for segments start from 1, unlabled points have label 0
*/
pcl::PointCloud<pcl::PointXYZL>::Ptr
getLabeledVoxelCloud () const;
/** \brief Gets the adjacency list (Boost Graph library) which gives connections between supervoxels
* \param[out] adjacency_list_arg BGL graph where supervoxel labels are vertices, edges are touching relationships
*/
void
getSupervoxelAdjacencyList (VoxelAdjacencyList &adjacency_list_arg) const;
/** \brief Get a multimap which gives supervoxel adjacency
* \param[out] label_adjacency Multi-Map which maps a supervoxel label to all adjacent supervoxel labels
*/
void
getSupervoxelAdjacency (std::multimap<std::uint32_t, std::uint32_t> &label_adjacency) const;
/** \brief Static helper function which returns a pointcloud of normals for the input supervoxels
* \param[in] supervoxel_clusters Supervoxel cluster map coming from this class
* \returns Cloud of PointNormals of the supervoxels
*
*/
static pcl::PointCloud<pcl::PointNormal>::Ptr
makeSupervoxelNormalCloud (std::map<std::uint32_t,typename Supervoxel<PointT>::Ptr > &supervoxel_clusters);
/** \brief Returns the current maximum (highest) label */
int
getMaxLabel () const;
private:
/** \brief This method simply checks if it is possible to execute the segmentation algorithm with
* the current settings. If it is possible then it returns true.
*/
virtual bool
prepareForSegmentation ();
/** \brief This selects points to use as initial supervoxel centroids
* \param[out] seed_indices The selected leaf indices
*/
void
selectInitialSupervoxelSeeds (Indices &seed_indices);
/** \brief This method creates the internal supervoxel helpers based on the provided seed points
* \param[in] seed_indices Indices of the leaves to use as seeds
*/
void
createSupervoxelHelpers (Indices &seed_indices);
/** \brief This performs the superpixel evolution */
void
expandSupervoxels (int depth);
/** \brief This sets the data of the voxels in the tree */
void
computeVoxelData ();
/** \brief Reseeds the supervoxels by finding the voxel closest to current centroid */
void
reseedSupervoxels ();
/** \brief Constructs the map of supervoxel clusters from the internal supervoxel helpers */
void
makeSupervoxels (std::map<std::uint32_t,typename Supervoxel<PointT>::Ptr > &supervoxel_clusters);
/** \brief Stores the resolution used in the octree */
float resolution_;
/** \brief Stores the resolution used to seed the superpixels */
float seed_resolution_;
/** \brief Distance function used for comparing voxelDatas */
float
voxelDataDistance (const VoxelData &v1, const VoxelData &v2) const;
/** \brief Transform function used to normalize voxel density versus distance from camera */
void
transformFunction (PointT &p);
/** \brief Contains a KDtree for the voxelized cloud */
typename pcl::search::KdTree<PointT>::Ptr voxel_kdtree_;
/** \brief Octree Adjacency structure with leaves at voxel resolution */
typename OctreeAdjacencyT::Ptr adjacency_octree_;
/** \brief Contains the Voxelized centroid Cloud */
typename PointCloudT::Ptr voxel_centroid_cloud_;
/** \brief Contains the Voxelized centroid Cloud */
typename NormalCloudT::ConstPtr input_normals_;
/** \brief Importance of color in clustering */
float color_importance_;
/** \brief Importance of distance from seed center in clustering */
float spatial_importance_;
/** \brief Importance of similarity in normals for clustering */
float normal_importance_;
/** \brief Whether or not to use the transform compressing depth in Z
* This is only checked if it has been manually set by the user.
* The default behavior is to use the transform for organized, and not for unorganized.
*/
bool use_single_camera_transform_;
/** \brief Whether to use default transform behavior or not */
bool use_default_transform_behaviour_;
/** \brief Internal storage class for supervoxels
* \note Stores pointers to leaves of clustering internal octree,
* \note so should not be used outside of clustering class
*/
class SupervoxelHelper
{
public:
/** \brief Comparator for LeafContainerT pointers - used for sorting set of leaves
* \note Compares by index in the overall leaf_vector. Order isn't important, so long as it is fixed.
*/
struct compareLeaves
{
bool operator() (LeafContainerT* const &left, LeafContainerT* const &right) const
{
const VoxelData& leaf_data_left = left->getData ();
const VoxelData& leaf_data_right = right->getData ();
return leaf_data_left.idx_ < leaf_data_right.idx_;
}
};
using LeafSetT = std::set<LeafContainerT*, typename SupervoxelHelper::compareLeaves>;
using iterator = typename LeafSetT::iterator;
using const_iterator = typename LeafSetT::const_iterator;
SupervoxelHelper (std::uint32_t label, SupervoxelClustering* parent_arg):
label_ (label),
parent_ (parent_arg)
{ }
void
addLeaf (LeafContainerT* leaf_arg);
void
removeLeaf (LeafContainerT* leaf_arg);
void
removeAllLeaves ();
void
expand ();
void
refineNormals ();
void
updateCentroid ();
void
getVoxels (typename pcl::PointCloud<PointT>::Ptr &voxels) const;
void
getNormals (typename pcl::PointCloud<Normal>::Ptr &normals) const;
using DistFuncPtr = float (SupervoxelClustering<PointT>::*)(const VoxelData &, const VoxelData &);
std::uint32_t
getLabel () const
{ return label_; }
Eigen::Vector4f
getNormal () const
{ return centroid_.normal_; }
Eigen::Vector3f
getRGB () const
{ return centroid_.rgb_; }
Eigen::Vector3f
getXYZ () const
{ return centroid_.xyz_;}
void
getXYZ (float &x, float &y, float &z) const
{ x=centroid_.xyz_[0]; y=centroid_.xyz_[1]; z=centroid_.xyz_[2]; }
void
getRGB (std::uint32_t &rgba) const
{
rgba = static_cast<std::uint32_t>(centroid_.rgb_[0]) << 16 |
static_cast<std::uint32_t>(centroid_.rgb_[1]) << 8 |
static_cast<std::uint32_t>(centroid_.rgb_[2]);
}
void
getNormal (pcl::Normal &normal_arg) const
{
normal_arg.normal_x = centroid_.normal_[0];
normal_arg.normal_y = centroid_.normal_[1];
normal_arg.normal_z = centroid_.normal_[2];
normal_arg.curvature = centroid_.curvature_;
}
void
getNeighborLabels (std::set<std::uint32_t> &neighbor_labels) const;
VoxelData
getCentroid () const
{ return centroid_; }
std::size_t
size () const { return leaves_.size (); }
private:
//Stores leaves
LeafSetT leaves_;
std::uint32_t label_;
VoxelData centroid_;
SupervoxelClustering* parent_;
public:
//Type VoxelData may have fixed-size Eigen objects inside
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
//Make boost::ptr_list can access the private class SupervoxelHelper
#if BOOST_VERSION >= 107000
friend void boost::checked_delete<> (const typename pcl::SupervoxelClustering<PointT>::SupervoxelHelper *) BOOST_NOEXCEPT;
#else
friend void boost::checked_delete<> (const typename pcl::SupervoxelClustering<PointT>::SupervoxelHelper *);
#endif
using HelperListT = boost::ptr_list<SupervoxelHelper>;
HelperListT supervoxel_helpers_;
//TODO DEBUG REMOVE
StopWatch timer_;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/segmentation/impl/supervoxel_clustering.hpp>
#endif