174 lines
7.4 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $id: $
*/
#pragma once
#include <pcl/pcl_base.h>
#include <pcl/point_types_conversion.h>
#include <pcl/search/search.h> // for Search
namespace pcl
{
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Decompose a region of space into clusters based on the Euclidean distance between points
* \param[in] cloud the point cloud message
* \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
* \note the tree has to be created as a spatial locator on \a cloud
* \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
* \param[in] indices_in the cluster containing the seed point indices (as a vector of PointIndices)
* \param[out] indices_out
* \param[in] delta_hue
* \todo look how to make this templated!
* \ingroup segmentation
*/
void
seededHueSegmentation (const PointCloud<PointXYZRGB> &cloud,
const search::Search<PointXYZRGB>::Ptr &tree,
float tolerance,
PointIndices &indices_in,
PointIndices &indices_out,
float delta_hue = 0.0);
/** \brief Decompose a region of space into clusters based on the Euclidean distance between points
* \param[in] cloud the point cloud message
* \param[in] tree the spatial locator (e.g., kd-tree) used for nearest neighbors searching
* \note the tree has to be created as a spatial locator on \a cloud
* \param[in] tolerance the spatial cluster tolerance as a measure in L2 Euclidean space
* \param[in] indices_in the cluster containing the seed point indices (as a vector of PointIndices)
* \param[out] indices_out
* \param[in] delta_hue
* \todo look how to make this templated!
* \ingroup segmentation
*/
void
seededHueSegmentation (const PointCloud<PointXYZRGB> &cloud,
const search::Search<PointXYZRGBL>::Ptr &tree,
float tolerance,
PointIndices &indices_in,
PointIndices &indices_out,
float delta_hue = 0.0);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief SeededHueSegmentation
* \author Koen Buys
* \ingroup segmentation
*/
class SeededHueSegmentation: public PCLBase<PointXYZRGB>
{
using BasePCLBase = PCLBase<PointXYZRGB>;
public:
using PointCloud = pcl::PointCloud<PointXYZRGB>;
using PointCloudPtr = PointCloud::Ptr;
using PointCloudConstPtr = PointCloud::ConstPtr;
using KdTree = pcl::search::Search<PointXYZRGB>;
using KdTreePtr = pcl::search::Search<PointXYZRGB>::Ptr;
using PointIndicesPtr = PointIndices::Ptr;
using PointIndicesConstPtr = PointIndices::ConstPtr;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Empty constructor. */
SeededHueSegmentation () : cluster_tolerance_ (0), delta_hue_ (0.0)
{};
/** \brief Provide a pointer to the search object.
* \param[in] tree a pointer to the spatial search object.
*/
inline void
setSearchMethod (const KdTreePtr &tree) { tree_ = tree; }
/** \brief Get a pointer to the search method used. */
inline KdTreePtr
getSearchMethod () const { return (tree_); }
/** \brief Set the spatial cluster tolerance as a measure in the L2 Euclidean space
* \param[in] tolerance the spatial cluster tolerance as a measure in the L2 Euclidean space
*/
inline void
setClusterTolerance (double tolerance) { cluster_tolerance_ = tolerance; }
/** \brief Get the spatial cluster tolerance as a measure in the L2 Euclidean space. */
inline double
getClusterTolerance () const { return (cluster_tolerance_); }
/** \brief Set the tollerance on the hue
* \param[in] delta_hue the new delta hue
*/
inline void
setDeltaHue (float delta_hue) { delta_hue_ = delta_hue; }
/** \brief Get the tolerance on the hue */
inline float
getDeltaHue () const { return (delta_hue_); }
/** \brief Cluster extraction in a PointCloud given by <setInputCloud (), setIndices ()>
* \param[in] indices_in
* \param[out] indices_out
*/
void
segment (PointIndices &indices_in, PointIndices &indices_out);
protected:
// Members derived from the base class
using BasePCLBase::input_;
using BasePCLBase::indices_;
using BasePCLBase::initCompute;
using BasePCLBase::deinitCompute;
/** \brief A pointer to the spatial search object. */
KdTreePtr tree_;
/** \brief The spatial cluster tolerance as a measure in the L2 Euclidean space. */
double cluster_tolerance_;
/** \brief The allowed difference on the hue*/
float delta_hue_;
/** \brief Class getName method. */
virtual std::string getClassName () const { return ("seededHueSegmentation"); }
};
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/segmentation/impl/seeded_hue_segmentation.hpp>
#endif