109 lines
4.1 KiB
C++
109 lines
4.1 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#ifndef PCL_SEARCH_KDTREE_IMPL_HPP_
|
|
#define PCL_SEARCH_KDTREE_IMPL_HPP_
|
|
|
|
#include <pcl/search/kdtree.h>
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT, class Tree>
|
|
pcl::search::KdTree<PointT,Tree>::KdTree (bool sorted)
|
|
: pcl::search::Search<PointT> ("KdTree", sorted)
|
|
, tree_ (new Tree (sorted))
|
|
{
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT, class Tree> void
|
|
pcl::search::KdTree<PointT,Tree>::setPointRepresentation (
|
|
const PointRepresentationConstPtr &point_representation)
|
|
{
|
|
tree_->setPointRepresentation (point_representation);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT, class Tree> void
|
|
pcl::search::KdTree<PointT,Tree>::setSortedResults (bool sorted_results)
|
|
{
|
|
sorted_results_ = sorted_results;
|
|
tree_->setSortedResults (sorted_results);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT, class Tree> void
|
|
pcl::search::KdTree<PointT,Tree>::setEpsilon (float eps)
|
|
{
|
|
tree_->setEpsilon (eps);
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT, class Tree> void
|
|
pcl::search::KdTree<PointT,Tree>::setInputCloud (
|
|
const PointCloudConstPtr& cloud,
|
|
const IndicesConstPtr& indices)
|
|
{
|
|
tree_->setInputCloud (cloud, indices);
|
|
input_ = cloud;
|
|
indices_ = indices;
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT, class Tree> int
|
|
pcl::search::KdTree<PointT,Tree>::nearestKSearch (
|
|
const PointT &point, int k, Indices &k_indices,
|
|
std::vector<float> &k_sqr_distances) const
|
|
{
|
|
return (tree_->nearestKSearch (point, k, k_indices, k_sqr_distances));
|
|
}
|
|
|
|
///////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT, class Tree> int
|
|
pcl::search::KdTree<PointT,Tree>::radiusSearch (
|
|
const PointT& point, double radius,
|
|
Indices &k_indices, std::vector<float> &k_sqr_distances,
|
|
unsigned int max_nn) const
|
|
{
|
|
return (tree_->radiusSearch (point, radius, k_indices, k_sqr_distances, max_nn));
|
|
}
|
|
|
|
#define PCL_INSTANTIATE_KdTree(T) template class PCL_EXPORTS pcl::search::KdTree<T>;
|
|
|
|
#endif //#ifndef _PCL_SEARCH_KDTREE_IMPL_HPP_
|
|
|
|
|