350 lines
15 KiB
C++
350 lines
15 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $Id$
|
|
*
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <pcl/memory.h>
|
|
#include <pcl/pcl_macros.h>
|
|
#include <pcl/pcl_base.h>
|
|
#include <pcl/sample_consensus/sac_model.h>
|
|
#include <pcl/sample_consensus/model_types.h>
|
|
#include <pcl/common/eigen.h>
|
|
#include <pcl/common/centroid.h>
|
|
#include <map>
|
|
#include <numeric> // for std::iota
|
|
|
|
namespace pcl
|
|
{
|
|
/** \brief SampleConsensusModelRegistration defines a model for Point-To-Point registration outlier rejection.
|
|
* \author Radu Bogdan Rusu
|
|
* \ingroup sample_consensus
|
|
*/
|
|
template <typename PointT>
|
|
class SampleConsensusModelRegistration : public SampleConsensusModel<PointT>
|
|
{
|
|
public:
|
|
using SampleConsensusModel<PointT>::model_name_;
|
|
using SampleConsensusModel<PointT>::input_;
|
|
using SampleConsensusModel<PointT>::indices_;
|
|
using SampleConsensusModel<PointT>::error_sqr_dists_;
|
|
using SampleConsensusModel<PointT>::isModelValid;
|
|
|
|
using PointCloud = typename SampleConsensusModel<PointT>::PointCloud;
|
|
using PointCloudPtr = typename SampleConsensusModel<PointT>::PointCloudPtr;
|
|
using PointCloudConstPtr = typename SampleConsensusModel<PointT>::PointCloudConstPtr;
|
|
|
|
using Ptr = shared_ptr<SampleConsensusModelRegistration<PointT> >;
|
|
using ConstPtr = shared_ptr<const SampleConsensusModelRegistration<PointT>>;
|
|
|
|
/** \brief Constructor for base SampleConsensusModelRegistration.
|
|
* \param[in] cloud the input point cloud dataset
|
|
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
|
|
*/
|
|
SampleConsensusModelRegistration (const PointCloudConstPtr &cloud,
|
|
bool random = false)
|
|
: SampleConsensusModel<PointT> (cloud, random)
|
|
, target_ ()
|
|
, sample_dist_thresh_ (0)
|
|
{
|
|
// Call our own setInputCloud
|
|
setInputCloud (cloud);
|
|
model_name_ = "SampleConsensusModelRegistration";
|
|
sample_size_ = 3;
|
|
model_size_ = 16;
|
|
}
|
|
|
|
/** \brief Constructor for base SampleConsensusModelRegistration.
|
|
* \param[in] cloud the input point cloud dataset
|
|
* \param[in] indices a vector of point indices to be used from \a cloud
|
|
* \param[in] random if true set the random seed to the current time, else set to 12345 (default: false)
|
|
*/
|
|
SampleConsensusModelRegistration (const PointCloudConstPtr &cloud,
|
|
const Indices &indices,
|
|
bool random = false)
|
|
: SampleConsensusModel<PointT> (cloud, indices, random)
|
|
, target_ ()
|
|
, sample_dist_thresh_ (0)
|
|
{
|
|
computeOriginalIndexMapping ();
|
|
computeSampleDistanceThreshold (cloud, indices);
|
|
model_name_ = "SampleConsensusModelRegistration";
|
|
sample_size_ = 3;
|
|
model_size_ = 16;
|
|
}
|
|
|
|
/** \brief Empty destructor */
|
|
~SampleConsensusModelRegistration () {}
|
|
|
|
/** \brief Provide a pointer to the input dataset
|
|
* \param[in] cloud the const boost shared pointer to a PointCloud message
|
|
*/
|
|
inline void
|
|
setInputCloud (const PointCloudConstPtr &cloud) override
|
|
{
|
|
SampleConsensusModel<PointT>::setInputCloud (cloud);
|
|
computeOriginalIndexMapping ();
|
|
computeSampleDistanceThreshold (cloud);
|
|
}
|
|
|
|
/** \brief Set the input point cloud target.
|
|
* \param[in] target the input point cloud target
|
|
*/
|
|
inline void
|
|
setInputTarget (const PointCloudConstPtr &target)
|
|
{
|
|
target_ = target;
|
|
// Cache the size and fill the target indices
|
|
const index_t target_size = static_cast<index_t> (target->size ());
|
|
indices_tgt_.reset (new Indices (target_size));
|
|
std::iota (indices_tgt_->begin (), indices_tgt_->end (), 0);
|
|
computeOriginalIndexMapping ();
|
|
}
|
|
|
|
/** \brief Set the input point cloud target.
|
|
* \param[in] target the input point cloud target
|
|
* \param[in] indices_tgt a vector of point indices to be used from \a target
|
|
*/
|
|
inline void
|
|
setInputTarget (const PointCloudConstPtr &target, const Indices &indices_tgt)
|
|
{
|
|
target_ = target;
|
|
indices_tgt_.reset (new Indices (indices_tgt));
|
|
computeOriginalIndexMapping ();
|
|
}
|
|
|
|
/** \brief Compute a 4x4 rigid transformation matrix from the samples given
|
|
* \param[in] samples the indices found as good candidates for creating a valid model
|
|
* \param[out] model_coefficients the resultant model coefficients
|
|
*/
|
|
bool
|
|
computeModelCoefficients (const Indices &samples,
|
|
Eigen::VectorXf &model_coefficients) const override;
|
|
|
|
/** \brief Compute all distances from the transformed points to their correspondences
|
|
* \param[in] model_coefficients the 4x4 transformation matrix
|
|
* \param[out] distances the resultant estimated distances
|
|
*/
|
|
void
|
|
getDistancesToModel (const Eigen::VectorXf &model_coefficients,
|
|
std::vector<double> &distances) const override;
|
|
|
|
/** \brief Select all the points which respect the given model coefficients as inliers.
|
|
* \param[in] model_coefficients the 4x4 transformation matrix
|
|
* \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers
|
|
* \param[out] inliers the resultant model inliers
|
|
*/
|
|
void
|
|
selectWithinDistance (const Eigen::VectorXf &model_coefficients,
|
|
const double threshold,
|
|
Indices &inliers) override;
|
|
|
|
/** \brief Count all the points which respect the given model coefficients as inliers.
|
|
*
|
|
* \param[in] model_coefficients the coefficients of a model that we need to compute distances to
|
|
* \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers
|
|
* \return the resultant number of inliers
|
|
*/
|
|
std::size_t
|
|
countWithinDistance (const Eigen::VectorXf &model_coefficients,
|
|
const double threshold) const override;
|
|
|
|
/** \brief Recompute the 4x4 transformation using the given inlier set
|
|
* \param[in] inliers the data inliers found as supporting the model
|
|
* \param[in] model_coefficients the initial guess for the optimization
|
|
* \param[out] optimized_coefficients the resultant recomputed transformation
|
|
*/
|
|
void
|
|
optimizeModelCoefficients (const Indices &inliers,
|
|
const Eigen::VectorXf &model_coefficients,
|
|
Eigen::VectorXf &optimized_coefficients) const override;
|
|
|
|
void
|
|
projectPoints (const Indices &,
|
|
const Eigen::VectorXf &,
|
|
PointCloud &, bool = true) const override
|
|
{
|
|
};
|
|
|
|
bool
|
|
doSamplesVerifyModel (const std::set<index_t> &,
|
|
const Eigen::VectorXf &,
|
|
const double) const override
|
|
{
|
|
return (false);
|
|
}
|
|
|
|
/** \brief Return a unique id for this model (SACMODEL_REGISTRATION). */
|
|
inline pcl::SacModel
|
|
getModelType () const override { return (SACMODEL_REGISTRATION); }
|
|
|
|
protected:
|
|
using SampleConsensusModel<PointT>::sample_size_;
|
|
using SampleConsensusModel<PointT>::model_size_;
|
|
|
|
/** \brief Check if a sample of indices results in a good sample of points
|
|
* indices.
|
|
* \param[in] samples the resultant index samples
|
|
*/
|
|
bool
|
|
isSampleGood (const Indices &samples) const override;
|
|
|
|
/** \brief Computes an "optimal" sample distance threshold based on the
|
|
* principal directions of the input cloud.
|
|
* \param[in] cloud the const boost shared pointer to a PointCloud message
|
|
*/
|
|
inline void
|
|
computeSampleDistanceThreshold (const PointCloudConstPtr &cloud)
|
|
{
|
|
// Compute the principal directions via PCA
|
|
Eigen::Vector4f xyz_centroid;
|
|
Eigen::Matrix3f covariance_matrix = Eigen::Matrix3f::Zero ();
|
|
|
|
computeMeanAndCovarianceMatrix (*cloud, covariance_matrix, xyz_centroid);
|
|
|
|
// Check if the covariance matrix is finite or not.
|
|
for (int i = 0; i < 3; ++i)
|
|
for (int j = 0; j < 3; ++j)
|
|
if (!std::isfinite (covariance_matrix.coeffRef (i, j)))
|
|
PCL_ERROR ("[pcl::SampleConsensusModelRegistration::computeSampleDistanceThreshold] Covariance matrix has NaN values! Is the input cloud finite?\n");
|
|
|
|
Eigen::Vector3f eigen_values;
|
|
pcl::eigen33 (covariance_matrix, eigen_values);
|
|
|
|
// Compute the distance threshold for sample selection
|
|
sample_dist_thresh_ = eigen_values.array ().sqrt ().sum () / 3.0;
|
|
sample_dist_thresh_ *= sample_dist_thresh_;
|
|
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample selection distance threshold of: %f\n", sample_dist_thresh_);
|
|
}
|
|
|
|
/** \brief Computes an "optimal" sample distance threshold based on the
|
|
* principal directions of the input cloud.
|
|
* \param[in] cloud the const boost shared pointer to a PointCloud message
|
|
* \param indices
|
|
*/
|
|
inline void
|
|
computeSampleDistanceThreshold (const PointCloudConstPtr &cloud,
|
|
const Indices &indices)
|
|
{
|
|
// Compute the principal directions via PCA
|
|
Eigen::Vector4f xyz_centroid;
|
|
Eigen::Matrix3f covariance_matrix;
|
|
computeMeanAndCovarianceMatrix (*cloud, indices, covariance_matrix, xyz_centroid);
|
|
|
|
// Check if the covariance matrix is finite or not.
|
|
for (int i = 0; i < 3; ++i)
|
|
for (int j = 0; j < 3; ++j)
|
|
if (!std::isfinite (covariance_matrix.coeffRef (i, j)))
|
|
PCL_ERROR ("[pcl::SampleConsensusModelRegistration::computeSampleDistanceThreshold] Covariance matrix has NaN values! Is the input cloud finite?\n");
|
|
|
|
Eigen::Vector3f eigen_values;
|
|
pcl::eigen33 (covariance_matrix, eigen_values);
|
|
|
|
// Compute the distance threshold for sample selection
|
|
sample_dist_thresh_ = eigen_values.array ().sqrt ().sum () / 3.0;
|
|
sample_dist_thresh_ *= sample_dist_thresh_;
|
|
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample selection distance threshold of: %f\n", sample_dist_thresh_);
|
|
}
|
|
|
|
/** \brief Estimate a rigid transformation between a source and a target point cloud using an SVD closed-form
|
|
* solution of absolute orientation using unit quaternions
|
|
* \param[in] cloud_src the source point cloud dataset
|
|
* \param[in] indices_src the vector of indices describing the points of interest in cloud_src
|
|
* \param[in] cloud_tgt the target point cloud dataset
|
|
* \param[in] indices_tgt the vector of indices describing the correspondences of the interest points from
|
|
* indices_src
|
|
* \param[out] transform the resultant transformation matrix (as model coefficients)
|
|
*
|
|
* This method is an implementation of: Horn, B. “Closed-Form Solution of Absolute Orientation Using Unit Quaternions,” JOSA A, Vol. 4, No. 4, 1987
|
|
*/
|
|
void
|
|
estimateRigidTransformationSVD (const pcl::PointCloud<PointT> &cloud_src,
|
|
const Indices &indices_src,
|
|
const pcl::PointCloud<PointT> &cloud_tgt,
|
|
const Indices &indices_tgt,
|
|
Eigen::VectorXf &transform) const;
|
|
|
|
/** \brief Compute mappings between original indices of the input_/target_ clouds. */
|
|
void
|
|
computeOriginalIndexMapping ()
|
|
{
|
|
if (!indices_tgt_)
|
|
{
|
|
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_tgt_ is null.\n");
|
|
return;
|
|
}
|
|
if (!indices_)
|
|
{
|
|
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_ is null.\n");
|
|
return;
|
|
}
|
|
if (indices_->empty ())
|
|
{
|
|
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_ is empty.\n");
|
|
return;
|
|
}
|
|
if (indices_->size () != indices_tgt_->size ())
|
|
{
|
|
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_ and indices_tgt_ are not the same size (%zu vs %zu).\n",
|
|
indices_->size (), indices_tgt_->size ());
|
|
return;
|
|
}
|
|
for (std::size_t i = 0; i < indices_->size (); ++i)
|
|
correspondences_[(*indices_)[i]] = (*indices_tgt_)[i];
|
|
PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Successfully computed mapping.\n");
|
|
}
|
|
|
|
/** \brief A boost shared pointer to the target point cloud data array. */
|
|
PointCloudConstPtr target_;
|
|
|
|
/** \brief A pointer to the vector of target point indices to use. */
|
|
IndicesPtr indices_tgt_;
|
|
|
|
/** \brief Given the index in the original point cloud, give the matching original index in the target cloud */
|
|
std::map<index_t, index_t> correspondences_;
|
|
|
|
/** \brief Internal distance threshold used for the sample selection step. */
|
|
double sample_dist_thresh_;
|
|
public:
|
|
PCL_MAKE_ALIGNED_OPERATOR_NEW
|
|
};
|
|
}
|
|
|
|
#include <pcl/sample_consensus/impl/sac_model_registration.hpp>
|