448 lines
16 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/registration/bfgs.h>
#include <pcl/registration/icp.h>
namespace pcl {
/** \brief GeneralizedIterativeClosestPoint is an ICP variant that implements the
* generalized iterative closest point algorithm as described by Alex Segal et al. in
* http://www.robots.ox.ac.uk/~avsegal/resources/papers/Generalized_ICP.pdf
* The approach is based on using anistropic cost functions to optimize the alignment
* after closest point assignments have been made.
* The original code uses GSL and ANN while in ours we use an eigen mapped BFGS and
* FLANN.
* \author Nizar Sallem
* \ingroup registration
*/
template <typename PointSource, typename PointTarget>
class GeneralizedIterativeClosestPoint
: public IterativeClosestPoint<PointSource, PointTarget> {
public:
using IterativeClosestPoint<PointSource, PointTarget>::reg_name_;
using IterativeClosestPoint<PointSource, PointTarget>::getClassName;
using IterativeClosestPoint<PointSource, PointTarget>::indices_;
using IterativeClosestPoint<PointSource, PointTarget>::target_;
using IterativeClosestPoint<PointSource, PointTarget>::input_;
using IterativeClosestPoint<PointSource, PointTarget>::tree_;
using IterativeClosestPoint<PointSource, PointTarget>::tree_reciprocal_;
using IterativeClosestPoint<PointSource, PointTarget>::nr_iterations_;
using IterativeClosestPoint<PointSource, PointTarget>::max_iterations_;
using IterativeClosestPoint<PointSource, PointTarget>::previous_transformation_;
using IterativeClosestPoint<PointSource, PointTarget>::final_transformation_;
using IterativeClosestPoint<PointSource, PointTarget>::transformation_;
using IterativeClosestPoint<PointSource, PointTarget>::transformation_epsilon_;
using IterativeClosestPoint<PointSource, PointTarget>::converged_;
using IterativeClosestPoint<PointSource, PointTarget>::corr_dist_threshold_;
using IterativeClosestPoint<PointSource, PointTarget>::inlier_threshold_;
using IterativeClosestPoint<PointSource, PointTarget>::min_number_correspondences_;
using IterativeClosestPoint<PointSource, PointTarget>::update_visualizer_;
using PointCloudSource = pcl::PointCloud<PointSource>;
using PointCloudSourcePtr = typename PointCloudSource::Ptr;
using PointCloudSourceConstPtr = typename PointCloudSource::ConstPtr;
using PointCloudTarget = pcl::PointCloud<PointTarget>;
using PointCloudTargetPtr = typename PointCloudTarget::Ptr;
using PointCloudTargetConstPtr = typename PointCloudTarget::ConstPtr;
using PointIndicesPtr = PointIndices::Ptr;
using PointIndicesConstPtr = PointIndices::ConstPtr;
using MatricesVector =
std::vector<Eigen::Matrix3d, Eigen::aligned_allocator<Eigen::Matrix3d>>;
using MatricesVectorPtr = shared_ptr<MatricesVector>;
using MatricesVectorConstPtr = shared_ptr<const MatricesVector>;
using InputKdTree = typename Registration<PointSource, PointTarget>::KdTree;
using InputKdTreePtr = typename Registration<PointSource, PointTarget>::KdTreePtr;
using Ptr = shared_ptr<GeneralizedIterativeClosestPoint<PointSource, PointTarget>>;
using ConstPtr =
shared_ptr<const GeneralizedIterativeClosestPoint<PointSource, PointTarget>>;
using Vector6d = Eigen::Matrix<double, 6, 1>;
/** \brief Empty constructor. */
GeneralizedIterativeClosestPoint()
: k_correspondences_(20)
, gicp_epsilon_(0.001)
, rotation_epsilon_(2e-3)
, mahalanobis_(0)
, max_inner_iterations_(20)
, translation_gradient_tolerance_(1e-2)
, rotation_gradient_tolerance_(1e-2)
{
min_number_correspondences_ = 4;
reg_name_ = "GeneralizedIterativeClosestPoint";
max_iterations_ = 200;
transformation_epsilon_ = 5e-4;
corr_dist_threshold_ = 5.;
rigid_transformation_estimation_ = [this](const PointCloudSource& cloud_src,
const pcl::Indices& indices_src,
const PointCloudTarget& cloud_tgt,
const pcl::Indices& indices_tgt,
Eigen::Matrix4f& transformation_matrix) {
estimateRigidTransformationBFGS(
cloud_src, indices_src, cloud_tgt, indices_tgt, transformation_matrix);
};
}
/** \brief Provide a pointer to the input dataset
* \param cloud the const boost shared pointer to a PointCloud message
*/
inline void
setInputSource(const PointCloudSourceConstPtr& cloud) override
{
if (cloud->points.empty()) {
PCL_ERROR(
"[pcl::%s::setInputSource] Invalid or empty point cloud dataset given!\n",
getClassName().c_str());
return;
}
PointCloudSource input = *cloud;
// Set all the point.data[3] values to 1 to aid the rigid transformation
for (std::size_t i = 0; i < input.size(); ++i)
input[i].data[3] = 1.0;
pcl::IterativeClosestPoint<PointSource, PointTarget>::setInputSource(cloud);
input_covariances_.reset();
}
/** \brief Provide a pointer to the covariances of the input source (if computed
* externally!). If not set, GeneralizedIterativeClosestPoint will compute the
* covariances itself. Make sure to set the covariances AFTER setting the input source
* point cloud (setting the input source point cloud will reset the covariances).
* \param[in] covariances the input source covariances
*/
inline void
setSourceCovariances(const MatricesVectorPtr& covariances)
{
input_covariances_ = covariances;
}
/** \brief Provide a pointer to the input target (e.g., the point cloud that we want
* to align the input source to) \param[in] target the input point cloud target
*/
inline void
setInputTarget(const PointCloudTargetConstPtr& target) override
{
pcl::IterativeClosestPoint<PointSource, PointTarget>::setInputTarget(target);
target_covariances_.reset();
}
/** \brief Provide a pointer to the covariances of the input target (if computed
* externally!). If not set, GeneralizedIterativeClosestPoint will compute the
* covariances itself. Make sure to set the covariances AFTER setting the input source
* point cloud (setting the input source point cloud will reset the covariances).
* \param[in] covariances the input target covariances
*/
inline void
setTargetCovariances(const MatricesVectorPtr& covariances)
{
target_covariances_ = covariances;
}
/** \brief Estimate a rigid rotation transformation between a source and a target
* point cloud using an iterative non-linear Levenberg-Marquardt approach. \param[in]
* cloud_src the source point cloud dataset \param[in] indices_src the vector of
* indices describing the points of interest in \a cloud_src
* \param[in] cloud_tgt the target point cloud dataset
* \param[in] indices_tgt the vector of indices describing
* the correspondences of the interest points from \a indices_src
* \param[out] transformation_matrix the resultant transformation matrix
*/
void
estimateRigidTransformationBFGS(const PointCloudSource& cloud_src,
const pcl::Indices& indices_src,
const PointCloudTarget& cloud_tgt,
const pcl::Indices& indices_tgt,
Eigen::Matrix4f& transformation_matrix);
/** \brief \return Mahalanobis distance matrix for the given point index */
inline const Eigen::Matrix3d&
mahalanobis(std::size_t index) const
{
assert(index < mahalanobis_.size());
return mahalanobis_[index];
}
/** \brief Computes rotation matrix derivative.
* rotation matrix is obtainded from rotation angles x[3], x[4] and x[5]
* \return d/d_rx, d/d_ry and d/d_rz respectively in g[3], g[4] and g[5]
* param x array representing 3D transformation
* param R rotation matrix
* param g gradient vector
*/
void
computeRDerivative(const Vector6d& x, const Eigen::Matrix3d& R, Vector6d& g) const;
/** \brief Set the rotation epsilon (maximum allowable difference between two
* consecutive rotations) in order for an optimization to be considered as having
* converged to the final solution.
* \param epsilon the rotation epsilon
*/
inline void
setRotationEpsilon(double epsilon)
{
rotation_epsilon_ = epsilon;
}
/** \brief Get the rotation epsilon (maximum allowable difference between two
* consecutive rotations) as set by the user.
*/
inline double
getRotationEpsilon() const
{
return rotation_epsilon_;
}
/** \brief Set the number of neighbors used when selecting a point neighbourhood
* to compute covariances.
* A higher value will bring more accurate covariance matrix but will make
* covariances computation slower.
* \param k the number of neighbors to use when computing covariances
*/
void
setCorrespondenceRandomness(int k)
{
k_correspondences_ = k;
}
/** \brief Get the number of neighbors used when computing covariances as set by
* the user
*/
int
getCorrespondenceRandomness() const
{
return k_correspondences_;
}
/** \brief Set maximum number of iterations at the optimization step
* \param[in] max maximum number of iterations for the optimizer
*/
void
setMaximumOptimizerIterations(int max)
{
max_inner_iterations_ = max;
}
/** \brief Return maximum number of iterations at the optimization step
*/
int
getMaximumOptimizerIterations() const
{
return max_inner_iterations_;
}
/** \brief Set the minimal translation gradient threshold for early optimization stop
* \param[in] tolerance translation gradient threshold in meters
*/
void
setTranslationGradientTolerance(double tolerance)
{
translation_gradient_tolerance_ = tolerance;
}
/** \brief Return the minimal translation gradient threshold for early optimization
* stop
*/
double
getTranslationGradientTolerance() const
{
return translation_gradient_tolerance_;
}
/** \brief Set the minimal rotation gradient threshold for early optimization stop
* \param[in] tolerance rotation gradient threshold in radians
*/
void
setRotationGradientTolerance(double tolerance)
{
rotation_gradient_tolerance_ = tolerance;
}
/** \brief Return the minimal rotation gradient threshold for early optimization stop
*/
double
getRotationGradientTolerance() const
{
return rotation_gradient_tolerance_;
}
protected:
/** \brief The number of neighbors used for covariances computation.
* default: 20
*/
int k_correspondences_;
/** \brief The epsilon constant for gicp paper; this is NOT the convergence
* tolerance
* default: 0.001
*/
double gicp_epsilon_;
/** The epsilon constant for rotation error. (In GICP the transformation epsilon
* is split in rotation part and translation part).
* default: 2e-3
*/
double rotation_epsilon_;
/** \brief base transformation */
Eigen::Matrix4f base_transformation_;
/** \brief Temporary pointer to the source dataset. */
const PointCloudSource* tmp_src_;
/** \brief Temporary pointer to the target dataset. */
const PointCloudTarget* tmp_tgt_;
/** \brief Temporary pointer to the source dataset indices. */
const pcl::Indices* tmp_idx_src_;
/** \brief Temporary pointer to the target dataset indices. */
const pcl::Indices* tmp_idx_tgt_;
/** \brief Input cloud points covariances. */
MatricesVectorPtr input_covariances_;
/** \brief Target cloud points covariances. */
MatricesVectorPtr target_covariances_;
/** \brief Mahalanobis matrices holder. */
std::vector<Eigen::Matrix3d> mahalanobis_;
/** \brief maximum number of optimizations */
int max_inner_iterations_;
/** \brief minimal translation gradient for early optimization stop */
double translation_gradient_tolerance_;
/** \brief minimal rotation gradient for early optimization stop */
double rotation_gradient_tolerance_;
/** \brief compute points covariances matrices according to the K nearest
* neighbors. K is set via setCorrespondenceRandomness() method.
* \param cloud pointer to point cloud
* \param tree KD tree performer for nearest neighbors search
* \param[out] cloud_covariances covariances matrices for each point in the cloud
*/
template <typename PointT>
void
computeCovariances(typename pcl::PointCloud<PointT>::ConstPtr cloud,
const typename pcl::search::KdTree<PointT>::Ptr tree,
MatricesVector& cloud_covariances);
/** \return trace of mat1^t . mat2
* \param mat1 matrix of dimension nxm
* \param mat2 matrix of dimension nxp
*/
inline double
matricesInnerProd(const Eigen::MatrixXd& mat1, const Eigen::MatrixXd& mat2) const
{
double r = 0.;
std::size_t n = mat1.rows();
// tr(mat1^t.mat2)
for (std::size_t i = 0; i < n; i++)
for (std::size_t j = 0; j < n; j++)
r += mat1(j, i) * mat2(i, j);
return r;
}
/** \brief Rigid transformation computation method with initial guess.
* \param output the transformed input point cloud dataset using the rigid
* transformation found \param guess the initial guess of the transformation to
* compute
*/
void
computeTransformation(PointCloudSource& output,
const Eigen::Matrix4f& guess) override;
/** \brief Search for the closest nearest neighbor of a given point.
* \param query the point to search a nearest neighbour for
* \param index vector of size 1 to store the index of the nearest neighbour found
* \param distance vector of size 1 to store the distance to nearest neighbour found
*/
inline bool
searchForNeighbors(const PointSource& query,
pcl::Indices& index,
std::vector<float>& distance)
{
int k = tree_->nearestKSearch(query, 1, index, distance);
if (k == 0)
return (false);
return (true);
}
/// \brief compute transformation matrix from transformation matrix
void
applyState(Eigen::Matrix4f& t, const Vector6d& x) const;
/// \brief optimization functor structure
struct OptimizationFunctorWithIndices : public BFGSDummyFunctor<double, 6> {
OptimizationFunctorWithIndices(const GeneralizedIterativeClosestPoint* gicp)
: BFGSDummyFunctor<double, 6>(), gicp_(gicp)
{}
double
operator()(const Vector6d& x) override;
void
df(const Vector6d& x, Vector6d& df) override;
void
fdf(const Vector6d& x, double& f, Vector6d& df) override;
BFGSSpace::Status
checkGradient(const Vector6d& g) override;
const GeneralizedIterativeClosestPoint* gicp_;
};
std::function<void(const pcl::PointCloud<PointSource>& cloud_src,
const pcl::Indices& src_indices,
const pcl::PointCloud<PointTarget>& cloud_tgt,
const pcl::Indices& tgt_indices,
Eigen::Matrix4f& transformation_matrix)>
rigid_transformation_estimation_;
};
} // namespace pcl
#include <pcl/registration/impl/gicp.hpp>