1532 lines
60 KiB
C++
1532 lines
60 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Copyright (c) 2011, Willow Garage, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of Willow Garage, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*
|
|
* Implementation of the ISM algorithm described in "Hough Transforms and 3D SURF for robust three dimensional classication"
|
|
* by Jan Knopp, Mukta Prasad, Geert Willems, Radu Timofte, and Luc Van Gool
|
|
*
|
|
* Authors: Roman Shapovalov, Alexander Velizhev, Sergey Ushakov
|
|
*/
|
|
|
|
#ifndef PCL_IMPLICIT_SHAPE_MODEL_HPP_
|
|
#define PCL_IMPLICIT_SHAPE_MODEL_HPP_
|
|
|
|
#include "../implicit_shape_model.h"
|
|
#include <pcl/filters/voxel_grid.h> // for VoxelGrid
|
|
#include <pcl/filters/extract_indices.h> // for ExtractIndices
|
|
|
|
#include <pcl/memory.h> // for dynamic_pointer_cast
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT>
|
|
pcl::features::ISMVoteList<PointT>::ISMVoteList () :
|
|
votes_ (new pcl::PointCloud<pcl::InterestPoint> ()),
|
|
tree_is_valid_ (false),
|
|
votes_origins_ (new pcl::PointCloud<PointT> ()),
|
|
votes_class_ (0),
|
|
k_ind_ (0),
|
|
k_sqr_dist_ (0)
|
|
{
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT>
|
|
pcl::features::ISMVoteList<PointT>::~ISMVoteList ()
|
|
{
|
|
votes_class_.clear ();
|
|
votes_origins_.reset ();
|
|
votes_.reset ();
|
|
k_ind_.clear ();
|
|
k_sqr_dist_.clear ();
|
|
tree_.reset ();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT> void
|
|
pcl::features::ISMVoteList<PointT>::addVote (
|
|
pcl::InterestPoint& vote, const PointT &vote_origin, int votes_class)
|
|
{
|
|
tree_is_valid_ = false;
|
|
votes_->points.insert (votes_->points.end (), vote);// TODO: adjust height and width
|
|
|
|
votes_origins_->points.push_back (vote_origin);
|
|
votes_class_.push_back (votes_class);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT> typename pcl::PointCloud<pcl::PointXYZRGB>::Ptr
|
|
pcl::features::ISMVoteList<PointT>::getColoredCloud (typename pcl::PointCloud<PointT>::Ptr cloud)
|
|
{
|
|
pcl::PointXYZRGB point;
|
|
pcl::PointCloud<pcl::PointXYZRGB>::Ptr colored_cloud = (new pcl::PointCloud<pcl::PointXYZRGB>)->makeShared ();
|
|
colored_cloud->height = 0;
|
|
colored_cloud->width = 1;
|
|
|
|
if (cloud != nullptr)
|
|
{
|
|
colored_cloud->height += cloud->size ();
|
|
point.r = 255;
|
|
point.g = 255;
|
|
point.b = 255;
|
|
for (const auto& i_point: *cloud)
|
|
{
|
|
point.x = i_point.x;
|
|
point.y = i_point.y;
|
|
point.z = i_point.z;
|
|
colored_cloud->points.push_back (point);
|
|
}
|
|
}
|
|
|
|
point.r = 0;
|
|
point.g = 0;
|
|
point.b = 255;
|
|
for (const auto &i_vote : votes_->points)
|
|
{
|
|
point.x = i_vote.x;
|
|
point.y = i_vote.y;
|
|
point.z = i_vote.z;
|
|
colored_cloud->points.push_back (point);
|
|
}
|
|
colored_cloud->height += votes_->size ();
|
|
|
|
return (colored_cloud);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT> void
|
|
pcl::features::ISMVoteList<PointT>::findStrongestPeaks (
|
|
std::vector<pcl::ISMPeak, Eigen::aligned_allocator<pcl::ISMPeak> > &out_peaks,
|
|
int in_class_id,
|
|
double in_non_maxima_radius,
|
|
double in_sigma)
|
|
{
|
|
validateTree ();
|
|
|
|
const std::size_t n_vote_classes = votes_class_.size ();
|
|
if (n_vote_classes == 0)
|
|
return;
|
|
for (std::size_t i = 0; i < n_vote_classes ; i++)
|
|
assert ( votes_class_[i] == in_class_id );
|
|
|
|
// heuristic: start from NUM_INIT_PTS different locations selected uniformly
|
|
// on the votes. Intuitively, it is likely to get a good location in dense regions.
|
|
const int NUM_INIT_PTS = 100;
|
|
double SIGMA_DIST = in_sigma;// rule of thumb: 10% of the object radius
|
|
const double FINAL_EPS = SIGMA_DIST / 100;// another heuristic
|
|
|
|
std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > peaks (NUM_INIT_PTS);
|
|
std::vector<double> peak_densities (NUM_INIT_PTS);
|
|
double max_density = -1.0;
|
|
for (int i = 0; i < NUM_INIT_PTS; i++)
|
|
{
|
|
Eigen::Vector3f old_center;
|
|
const auto idx = votes_->size() * i / NUM_INIT_PTS;
|
|
Eigen::Vector3f curr_center = (*votes_)[idx].getVector3fMap();
|
|
|
|
do
|
|
{
|
|
old_center = curr_center;
|
|
curr_center = shiftMean (old_center, SIGMA_DIST);
|
|
} while ((old_center - curr_center).norm () > FINAL_EPS);
|
|
|
|
pcl::PointXYZ point;
|
|
point.x = curr_center (0);
|
|
point.y = curr_center (1);
|
|
point.z = curr_center (2);
|
|
double curr_density = getDensityAtPoint (point, SIGMA_DIST);
|
|
assert (curr_density >= 0.0);
|
|
|
|
peaks[i] = curr_center;
|
|
peak_densities[i] = curr_density;
|
|
|
|
if ( max_density < curr_density )
|
|
max_density = curr_density;
|
|
}
|
|
|
|
//extract peaks
|
|
std::vector<bool> peak_flag (NUM_INIT_PTS, true);
|
|
for (int i_peak = 0; i_peak < NUM_INIT_PTS; i_peak++)
|
|
{
|
|
// find best peak with taking into consideration peak flags
|
|
double best_density = -1.0;
|
|
Eigen::Vector3f strongest_peak;
|
|
int best_peak_ind (-1);
|
|
int peak_counter (0);
|
|
for (int i = 0; i < NUM_INIT_PTS; i++)
|
|
{
|
|
if ( !peak_flag[i] )
|
|
continue;
|
|
|
|
if ( peak_densities[i] > best_density)
|
|
{
|
|
best_density = peak_densities[i];
|
|
strongest_peak = peaks[i];
|
|
best_peak_ind = i;
|
|
}
|
|
++peak_counter;
|
|
}
|
|
|
|
if( peak_counter == 0 )
|
|
break;// no peaks
|
|
|
|
pcl::ISMPeak peak;
|
|
peak.x = strongest_peak(0);
|
|
peak.y = strongest_peak(1);
|
|
peak.z = strongest_peak(2);
|
|
peak.density = best_density;
|
|
peak.class_id = in_class_id;
|
|
out_peaks.push_back ( peak );
|
|
|
|
// mark best peaks and all its neighbors
|
|
peak_flag[best_peak_ind] = false;
|
|
for (int i = 0; i < NUM_INIT_PTS; i++)
|
|
{
|
|
// compute distance between best peak and all unmarked peaks
|
|
if ( !peak_flag[i] )
|
|
continue;
|
|
|
|
double dist = (strongest_peak - peaks[i]).norm ();
|
|
if ( dist < in_non_maxima_radius )
|
|
peak_flag[i] = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT> void
|
|
pcl::features::ISMVoteList<PointT>::validateTree ()
|
|
{
|
|
if (!tree_is_valid_)
|
|
{
|
|
if (tree_ == nullptr)
|
|
tree_.reset (new pcl::KdTreeFLANN<pcl::InterestPoint>);
|
|
tree_->setInputCloud (votes_);
|
|
k_ind_.resize ( votes_->size (), -1 );
|
|
k_sqr_dist_.resize ( votes_->size (), 0.0f );
|
|
tree_is_valid_ = true;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT> Eigen::Vector3f
|
|
pcl::features::ISMVoteList<PointT>::shiftMean (const Eigen::Vector3f& snap_pt, const double in_sigma_dist)
|
|
{
|
|
validateTree ();
|
|
|
|
Eigen::Vector3f wgh_sum (0.0, 0.0, 0.0);
|
|
double denom = 0.0;
|
|
|
|
pcl::InterestPoint pt;
|
|
pt.x = snap_pt[0];
|
|
pt.y = snap_pt[1];
|
|
pt.z = snap_pt[2];
|
|
std::size_t n_pts = tree_->radiusSearch (pt, 3*in_sigma_dist, k_ind_, k_sqr_dist_);
|
|
|
|
for (std::size_t j = 0; j < n_pts; j++)
|
|
{
|
|
double kernel = (*votes_)[k_ind_[j]].strength * std::exp (-k_sqr_dist_[j] / (in_sigma_dist * in_sigma_dist));
|
|
Eigen::Vector3f vote_vec ((*votes_)[k_ind_[j]].x, (*votes_)[k_ind_[j]].y, (*votes_)[k_ind_[j]].z);
|
|
wgh_sum += vote_vec * static_cast<float> (kernel);
|
|
denom += kernel;
|
|
}
|
|
assert (denom > 0.0); // at least one point is close. In fact, this case should be handled too
|
|
|
|
return (wgh_sum / static_cast<float> (denom));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT> double
|
|
pcl::features::ISMVoteList<PointT>::getDensityAtPoint (
|
|
const PointT &point, double sigma_dist)
|
|
{
|
|
validateTree ();
|
|
|
|
const std::size_t n_vote_classes = votes_class_.size ();
|
|
if (n_vote_classes == 0)
|
|
return (0.0);
|
|
|
|
double sum_vote = 0.0;
|
|
|
|
pcl::InterestPoint pt;
|
|
pt.x = point.x;
|
|
pt.y = point.y;
|
|
pt.z = point.z;
|
|
std::size_t num_of_pts = tree_->radiusSearch (pt, 3 * sigma_dist, k_ind_, k_sqr_dist_);
|
|
|
|
for (std::size_t j = 0; j < num_of_pts; j++)
|
|
sum_vote += (*votes_)[k_ind_[j]].strength * std::exp (-k_sqr_dist_[j] / (sigma_dist * sigma_dist));
|
|
|
|
return (sum_vote);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointT> unsigned int
|
|
pcl::features::ISMVoteList<PointT>::getNumberOfVotes ()
|
|
{
|
|
return (static_cast<unsigned int> (votes_->size ()));
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
pcl::features::ISMModel::ISMModel () :
|
|
statistical_weights_ (0),
|
|
learned_weights_ (0),
|
|
classes_ (0),
|
|
sigmas_ (0),
|
|
clusters_ (0),
|
|
number_of_classes_ (0),
|
|
number_of_visual_words_ (0),
|
|
number_of_clusters_ (0),
|
|
descriptors_dimension_ (0)
|
|
{
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
pcl::features::ISMModel::ISMModel (ISMModel const & copy)
|
|
{
|
|
reset ();
|
|
|
|
this->number_of_classes_ = copy.number_of_classes_;
|
|
this->number_of_visual_words_ = copy.number_of_visual_words_;
|
|
this->number_of_clusters_ = copy.number_of_clusters_;
|
|
this->descriptors_dimension_ = copy.descriptors_dimension_;
|
|
|
|
std::vector<float> vec;
|
|
vec.resize (this->number_of_clusters_, 0.0f);
|
|
this->statistical_weights_.resize (this->number_of_classes_, vec);
|
|
for (unsigned int i_class = 0; i_class < this->number_of_classes_; i_class++)
|
|
for (unsigned int i_cluster = 0; i_cluster < this->number_of_clusters_; i_cluster++)
|
|
this->statistical_weights_[i_class][i_cluster] = copy.statistical_weights_[i_class][i_cluster];
|
|
|
|
this->learned_weights_.resize (this->number_of_visual_words_, 0.0f);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
|
|
this->learned_weights_[i_visual_word] = copy.learned_weights_[i_visual_word];
|
|
|
|
this->classes_.resize (this->number_of_visual_words_, 0);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
|
|
this->classes_[i_visual_word] = copy.classes_[i_visual_word];
|
|
|
|
this->sigmas_.resize (this->number_of_classes_, 0.0f);
|
|
for (unsigned int i_class = 0; i_class < this->number_of_classes_; i_class++)
|
|
this->sigmas_[i_class] = copy.sigmas_[i_class];
|
|
|
|
this->directions_to_center_.resize (this->number_of_visual_words_, 3);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
|
|
for (unsigned int i_dim = 0; i_dim < 3; i_dim++)
|
|
this->directions_to_center_ (i_visual_word, i_dim) = copy.directions_to_center_ (i_visual_word, i_dim);
|
|
|
|
this->clusters_centers_.resize (this->number_of_clusters_, 3);
|
|
for (unsigned int i_cluster = 0; i_cluster < this->number_of_clusters_; i_cluster++)
|
|
for (unsigned int i_dim = 0; i_dim < this->descriptors_dimension_; i_dim++)
|
|
this->clusters_centers_ (i_cluster, i_dim) = copy.clusters_centers_ (i_cluster, i_dim);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
pcl::features::ISMModel::~ISMModel ()
|
|
{
|
|
reset ();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
bool
|
|
pcl::features::ISMModel::saveModelToFile (std::string& file_name)
|
|
{
|
|
std::ofstream output_file (file_name.c_str (), std::ios::trunc);
|
|
if (!output_file)
|
|
{
|
|
output_file.close ();
|
|
return (false);
|
|
}
|
|
|
|
output_file << number_of_classes_ << " ";
|
|
output_file << number_of_visual_words_ << " ";
|
|
output_file << number_of_clusters_ << " ";
|
|
output_file << descriptors_dimension_ << " ";
|
|
|
|
//write statistical weights
|
|
for (unsigned int i_class = 0; i_class < number_of_classes_; i_class++)
|
|
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
|
|
output_file << statistical_weights_[i_class][i_cluster] << " ";
|
|
|
|
//write learned weights
|
|
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
|
|
output_file << learned_weights_[i_visual_word] << " ";
|
|
|
|
//write classes
|
|
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
|
|
output_file << classes_[i_visual_word] << " ";
|
|
|
|
//write sigmas
|
|
for (unsigned int i_class = 0; i_class < number_of_classes_; i_class++)
|
|
output_file << sigmas_[i_class] << " ";
|
|
|
|
//write directions to centers
|
|
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
|
|
for (unsigned int i_dim = 0; i_dim < 3; i_dim++)
|
|
output_file << directions_to_center_ (i_visual_word, i_dim) << " ";
|
|
|
|
//write clusters centers
|
|
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
|
|
for (unsigned int i_dim = 0; i_dim < descriptors_dimension_; i_dim++)
|
|
output_file << clusters_centers_ (i_cluster, i_dim) << " ";
|
|
|
|
//write clusters
|
|
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
|
|
{
|
|
output_file << static_cast<unsigned int> (clusters_[i_cluster].size ()) << " ";
|
|
for (const unsigned int &visual_word : clusters_[i_cluster])
|
|
output_file << visual_word << " ";
|
|
}
|
|
|
|
output_file.close ();
|
|
return (true);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
bool
|
|
pcl::features::ISMModel::loadModelFromfile (std::string& file_name)
|
|
{
|
|
reset ();
|
|
std::ifstream input_file (file_name.c_str ());
|
|
if (!input_file)
|
|
{
|
|
input_file.close ();
|
|
return (false);
|
|
}
|
|
|
|
char line[256];
|
|
|
|
input_file.getline (line, 256, ' ');
|
|
number_of_classes_ = static_cast<unsigned int> (strtol (line, nullptr, 10));
|
|
input_file.getline (line, 256, ' '); number_of_visual_words_ = atoi (line);
|
|
input_file.getline (line, 256, ' '); number_of_clusters_ = atoi (line);
|
|
input_file.getline (line, 256, ' '); descriptors_dimension_ = atoi (line);
|
|
|
|
//read statistical weights
|
|
std::vector<float> vec;
|
|
vec.resize (number_of_clusters_, 0.0f);
|
|
statistical_weights_.resize (number_of_classes_, vec);
|
|
for (unsigned int i_class = 0; i_class < number_of_classes_; i_class++)
|
|
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
|
|
input_file >> statistical_weights_[i_class][i_cluster];
|
|
|
|
//read learned weights
|
|
learned_weights_.resize (number_of_visual_words_, 0.0f);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
|
|
input_file >> learned_weights_[i_visual_word];
|
|
|
|
//read classes
|
|
classes_.resize (number_of_visual_words_, 0);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
|
|
input_file >> classes_[i_visual_word];
|
|
|
|
//read sigmas
|
|
sigmas_.resize (number_of_classes_, 0.0f);
|
|
for (unsigned int i_class = 0; i_class < number_of_classes_; i_class++)
|
|
input_file >> sigmas_[i_class];
|
|
|
|
//read directions to centers
|
|
directions_to_center_.resize (number_of_visual_words_, 3);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
|
|
for (unsigned int i_dim = 0; i_dim < 3; i_dim++)
|
|
input_file >> directions_to_center_ (i_visual_word, i_dim);
|
|
|
|
//read clusters centers
|
|
clusters_centers_.resize (number_of_clusters_, descriptors_dimension_);
|
|
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
|
|
for (unsigned int i_dim = 0; i_dim < descriptors_dimension_; i_dim++)
|
|
input_file >> clusters_centers_ (i_cluster, i_dim);
|
|
|
|
//read clusters
|
|
std::vector<unsigned int> vect;
|
|
clusters_.resize (number_of_clusters_, vect);
|
|
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
|
|
{
|
|
unsigned int size_of_current_cluster = 0;
|
|
input_file >> size_of_current_cluster;
|
|
clusters_[i_cluster].resize (size_of_current_cluster, 0);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < size_of_current_cluster; i_visual_word++)
|
|
input_file >> clusters_[i_cluster][i_visual_word];
|
|
}
|
|
|
|
input_file.close ();
|
|
return (true);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
void
|
|
pcl::features::ISMModel::reset ()
|
|
{
|
|
statistical_weights_.clear ();
|
|
learned_weights_.clear ();
|
|
classes_.clear ();
|
|
sigmas_.clear ();
|
|
directions_to_center_.resize (0, 0);
|
|
clusters_centers_.resize (0, 0);
|
|
clusters_.clear ();
|
|
number_of_classes_ = 0;
|
|
number_of_visual_words_ = 0;
|
|
number_of_clusters_ = 0;
|
|
descriptors_dimension_ = 0;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
pcl::features::ISMModel&
|
|
pcl::features::ISMModel::operator = (const pcl::features::ISMModel& other)
|
|
{
|
|
if (this != &other)
|
|
{
|
|
this->reset ();
|
|
|
|
this->number_of_classes_ = other.number_of_classes_;
|
|
this->number_of_visual_words_ = other.number_of_visual_words_;
|
|
this->number_of_clusters_ = other.number_of_clusters_;
|
|
this->descriptors_dimension_ = other.descriptors_dimension_;
|
|
|
|
std::vector<float> vec;
|
|
vec.resize (number_of_clusters_, 0.0f);
|
|
this->statistical_weights_.resize (this->number_of_classes_, vec);
|
|
for (unsigned int i_class = 0; i_class < this->number_of_classes_; i_class++)
|
|
for (unsigned int i_cluster = 0; i_cluster < this->number_of_clusters_; i_cluster++)
|
|
this->statistical_weights_[i_class][i_cluster] = other.statistical_weights_[i_class][i_cluster];
|
|
|
|
this->learned_weights_.resize (this->number_of_visual_words_, 0.0f);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
|
|
this->learned_weights_[i_visual_word] = other.learned_weights_[i_visual_word];
|
|
|
|
this->classes_.resize (this->number_of_visual_words_, 0);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
|
|
this->classes_[i_visual_word] = other.classes_[i_visual_word];
|
|
|
|
this->sigmas_.resize (this->number_of_classes_, 0.0f);
|
|
for (unsigned int i_class = 0; i_class < this->number_of_classes_; i_class++)
|
|
this->sigmas_[i_class] = other.sigmas_[i_class];
|
|
|
|
this->directions_to_center_.resize (this->number_of_visual_words_, 3);
|
|
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
|
|
for (unsigned int i_dim = 0; i_dim < 3; i_dim++)
|
|
this->directions_to_center_ (i_visual_word, i_dim) = other.directions_to_center_ (i_visual_word, i_dim);
|
|
|
|
this->clusters_centers_.resize (this->number_of_clusters_, 3);
|
|
for (unsigned int i_cluster = 0; i_cluster < this->number_of_clusters_; i_cluster++)
|
|
for (unsigned int i_dim = 0; i_dim < this->descriptors_dimension_; i_dim++)
|
|
this->clusters_centers_ (i_cluster, i_dim) = other.clusters_centers_ (i_cluster, i_dim);
|
|
}
|
|
return (*this);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT>
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::ImplicitShapeModelEstimation () :
|
|
training_clouds_ (0),
|
|
training_classes_ (0),
|
|
training_normals_ (0),
|
|
training_sigmas_ (0),
|
|
sampling_size_ (0.1f),
|
|
feature_estimator_ (),
|
|
number_of_clusters_ (184),
|
|
n_vot_ON_ (true)
|
|
{
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT>
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::~ImplicitShapeModelEstimation ()
|
|
{
|
|
training_clouds_.clear ();
|
|
training_classes_.clear ();
|
|
training_normals_.clear ();
|
|
training_sigmas_.clear ();
|
|
feature_estimator_.reset ();
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> std::vector<typename pcl::PointCloud<PointT>::Ptr>
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getTrainingClouds ()
|
|
{
|
|
return (training_clouds_);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setTrainingClouds (
|
|
const std::vector< typename pcl::PointCloud<PointT>::Ptr >& training_clouds)
|
|
{
|
|
training_clouds_.clear ();
|
|
std::vector<typename pcl::PointCloud<PointT>::Ptr > clouds ( training_clouds.begin (), training_clouds.end () );
|
|
training_clouds_.swap (clouds);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> std::vector<unsigned int>
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getTrainingClasses ()
|
|
{
|
|
return (training_classes_);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setTrainingClasses (const std::vector<unsigned int>& training_classes)
|
|
{
|
|
training_classes_.clear ();
|
|
std::vector<unsigned int> classes ( training_classes.begin (), training_classes.end () );
|
|
training_classes_.swap (classes);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> std::vector<typename pcl::PointCloud<NormalT>::Ptr>
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getTrainingNormals ()
|
|
{
|
|
return (training_normals_);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setTrainingNormals (
|
|
const std::vector< typename pcl::PointCloud<NormalT>::Ptr >& training_normals)
|
|
{
|
|
training_normals_.clear ();
|
|
std::vector<typename pcl::PointCloud<NormalT>::Ptr > normals ( training_normals.begin (), training_normals.end () );
|
|
training_normals_.swap (normals);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> float
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getSamplingSize ()
|
|
{
|
|
return (sampling_size_);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setSamplingSize (float sampling_size)
|
|
{
|
|
if (sampling_size >= std::numeric_limits<float>::epsilon ())
|
|
sampling_size_ = sampling_size;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> typename pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::FeaturePtr
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getFeatureEstimator ()
|
|
{
|
|
return (feature_estimator_);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setFeatureEstimator (FeaturePtr feature)
|
|
{
|
|
feature_estimator_ = feature;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> unsigned int
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getNumberOfClusters ()
|
|
{
|
|
return (number_of_clusters_);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setNumberOfClusters (unsigned int num_of_clusters)
|
|
{
|
|
if (num_of_clusters > 0)
|
|
number_of_clusters_ = num_of_clusters;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> std::vector<float>
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getSigmaDists ()
|
|
{
|
|
return (training_sigmas_);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setSigmaDists (const std::vector<float>& training_sigmas)
|
|
{
|
|
training_sigmas_.clear ();
|
|
std::vector<float> sigmas ( training_sigmas.begin (), training_sigmas.end () );
|
|
training_sigmas_.swap (sigmas);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> bool
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getNVotState ()
|
|
{
|
|
return (n_vot_ON_);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setNVotState (bool state)
|
|
{
|
|
n_vot_ON_ = state;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> bool
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::trainISM (ISMModelPtr& trained_model)
|
|
{
|
|
bool success = true;
|
|
|
|
if (trained_model == nullptr)
|
|
return (false);
|
|
trained_model->reset ();
|
|
|
|
std::vector<pcl::Histogram<FeatureSize> > histograms;
|
|
std::vector<LocationInfo, Eigen::aligned_allocator<LocationInfo> > locations;
|
|
success = extractDescriptors (histograms, locations);
|
|
if (!success)
|
|
return (false);
|
|
|
|
Eigen::MatrixXi labels;
|
|
success = clusterDescriptors(histograms, labels, trained_model->clusters_centers_);
|
|
if (!success)
|
|
return (false);
|
|
|
|
std::vector<unsigned int> vec;
|
|
trained_model->clusters_.resize (number_of_clusters_, vec);
|
|
for (std::size_t i_label = 0; i_label < locations.size (); i_label++)
|
|
trained_model->clusters_[labels (i_label)].push_back (i_label);
|
|
|
|
calculateSigmas (trained_model->sigmas_);
|
|
|
|
calculateWeights(
|
|
locations,
|
|
labels,
|
|
trained_model->sigmas_,
|
|
trained_model->clusters_,
|
|
trained_model->statistical_weights_,
|
|
trained_model->learned_weights_);
|
|
|
|
trained_model->number_of_classes_ = *std::max_element (training_classes_.begin (), training_classes_.end () ) + 1;
|
|
trained_model->number_of_visual_words_ = static_cast<unsigned int> (histograms.size ());
|
|
trained_model->number_of_clusters_ = number_of_clusters_;
|
|
trained_model->descriptors_dimension_ = FeatureSize;
|
|
|
|
trained_model->directions_to_center_.resize (locations.size (), 3);
|
|
trained_model->classes_.resize (locations.size ());
|
|
for (std::size_t i_dir = 0; i_dir < locations.size (); i_dir++)
|
|
{
|
|
trained_model->directions_to_center_(i_dir, 0) = locations[i_dir].dir_to_center_.x;
|
|
trained_model->directions_to_center_(i_dir, 1) = locations[i_dir].dir_to_center_.y;
|
|
trained_model->directions_to_center_(i_dir, 2) = locations[i_dir].dir_to_center_.z;
|
|
trained_model->classes_[i_dir] = training_classes_[locations[i_dir].model_num_];
|
|
}
|
|
|
|
return (true);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> typename pcl::features::ISMVoteList<PointT>::Ptr
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::findObjects (
|
|
ISMModelPtr model,
|
|
typename pcl::PointCloud<PointT>::Ptr in_cloud,
|
|
typename pcl::PointCloud<Normal>::Ptr in_normals,
|
|
int in_class_of_interest)
|
|
{
|
|
typename pcl::features::ISMVoteList<PointT>::Ptr out_votes (new pcl::features::ISMVoteList<PointT> ());
|
|
|
|
if (in_cloud->points.empty ())
|
|
return (out_votes);
|
|
|
|
typename pcl::PointCloud<PointT>::Ptr sampled_point_cloud (new pcl::PointCloud<PointT> ());
|
|
typename pcl::PointCloud<NormalT>::Ptr sampled_normal_cloud (new pcl::PointCloud<NormalT> ());
|
|
simplifyCloud (in_cloud, in_normals, sampled_point_cloud, sampled_normal_cloud);
|
|
if (sampled_point_cloud->points.empty ())
|
|
return (out_votes);
|
|
|
|
typename pcl::PointCloud<pcl::Histogram<FeatureSize> >::Ptr feature_cloud (new pcl::PointCloud<pcl::Histogram<FeatureSize> > ());
|
|
estimateFeatures (sampled_point_cloud, sampled_normal_cloud, feature_cloud);
|
|
|
|
//find nearest cluster
|
|
const unsigned int n_key_points = static_cast<unsigned int> (sampled_point_cloud->size ());
|
|
std::vector<int> min_dist_inds (n_key_points, -1);
|
|
for (unsigned int i_point = 0; i_point < n_key_points; i_point++)
|
|
{
|
|
Eigen::VectorXf curr_descriptor (FeatureSize);
|
|
for (int i_dim = 0; i_dim < FeatureSize; i_dim++)
|
|
curr_descriptor (i_dim) = (*feature_cloud)[i_point].histogram[i_dim];
|
|
|
|
float descriptor_sum = curr_descriptor.sum ();
|
|
if (descriptor_sum < std::numeric_limits<float>::epsilon ())
|
|
continue;
|
|
|
|
unsigned int min_dist_idx = 0;
|
|
Eigen::VectorXf clusters_center (FeatureSize);
|
|
for (int i_dim = 0; i_dim < FeatureSize; i_dim++)
|
|
clusters_center (i_dim) = model->clusters_centers_ (min_dist_idx, i_dim);
|
|
|
|
float best_dist = computeDistance (curr_descriptor, clusters_center);
|
|
for (unsigned int i_clust_cent = 0; i_clust_cent < number_of_clusters_; i_clust_cent++)
|
|
{
|
|
for (int i_dim = 0; i_dim < FeatureSize; i_dim++)
|
|
clusters_center (i_dim) = model->clusters_centers_ (i_clust_cent, i_dim);
|
|
float curr_dist = computeDistance (clusters_center, curr_descriptor);
|
|
if (curr_dist < best_dist)
|
|
{
|
|
min_dist_idx = i_clust_cent;
|
|
best_dist = curr_dist;
|
|
}
|
|
}
|
|
min_dist_inds[i_point] = min_dist_idx;
|
|
}//next keypoint
|
|
|
|
for (std::size_t i_point = 0; i_point < n_key_points; i_point++)
|
|
{
|
|
int min_dist_idx = min_dist_inds[i_point];
|
|
if (min_dist_idx == -1)
|
|
continue;
|
|
|
|
const unsigned int n_words = static_cast<unsigned int> (model->clusters_[min_dist_idx].size ());
|
|
//compute coord system transform
|
|
Eigen::Matrix3f transform = alignYCoordWithNormal ((*sampled_normal_cloud)[i_point]);
|
|
for (unsigned int i_word = 0; i_word < n_words; i_word++)
|
|
{
|
|
unsigned int index = model->clusters_[min_dist_idx][i_word];
|
|
unsigned int i_class = model->classes_[index];
|
|
if (static_cast<int> (i_class) != in_class_of_interest)
|
|
continue;//skip this class
|
|
|
|
//rotate dir to center as needed
|
|
Eigen::Vector3f direction (
|
|
model->directions_to_center_(index, 0),
|
|
model->directions_to_center_(index, 1),
|
|
model->directions_to_center_(index, 2));
|
|
applyTransform (direction, transform.transpose ());
|
|
|
|
pcl::InterestPoint vote;
|
|
Eigen::Vector3f vote_pos = (*sampled_point_cloud)[i_point].getVector3fMap () + direction;
|
|
vote.x = vote_pos[0];
|
|
vote.y = vote_pos[1];
|
|
vote.z = vote_pos[2];
|
|
float statistical_weight = model->statistical_weights_[in_class_of_interest][min_dist_idx];
|
|
float learned_weight = model->learned_weights_[index];
|
|
float power = statistical_weight * learned_weight;
|
|
vote.strength = power;
|
|
if (vote.strength > std::numeric_limits<float>::epsilon ())
|
|
out_votes->addVote (vote, (*sampled_point_cloud)[i_point], i_class);
|
|
}
|
|
}//next point
|
|
|
|
return (out_votes);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> bool
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::extractDescriptors (
|
|
std::vector< pcl::Histogram<FeatureSize> >& histograms,
|
|
std::vector< LocationInfo, Eigen::aligned_allocator<LocationInfo> >& locations)
|
|
{
|
|
histograms.clear ();
|
|
locations.clear ();
|
|
|
|
int n_key_points = 0;
|
|
|
|
if (training_clouds_.empty () || training_classes_.empty () || feature_estimator_ == nullptr)
|
|
return (false);
|
|
|
|
for (std::size_t i_cloud = 0; i_cloud < training_clouds_.size (); i_cloud++)
|
|
{
|
|
//compute the center of the training object
|
|
Eigen::Vector3f models_center (0.0f, 0.0f, 0.0f);
|
|
const auto num_of_points = training_clouds_[i_cloud]->size ();
|
|
for (auto point_j = training_clouds_[i_cloud]->begin (); point_j != training_clouds_[i_cloud]->end (); point_j++)
|
|
models_center += point_j->getVector3fMap ();
|
|
models_center /= static_cast<float> (num_of_points);
|
|
|
|
//downsample the cloud
|
|
typename pcl::PointCloud<PointT>::Ptr sampled_point_cloud (new pcl::PointCloud<PointT> ());
|
|
typename pcl::PointCloud<NormalT>::Ptr sampled_normal_cloud (new pcl::PointCloud<NormalT> ());
|
|
simplifyCloud (training_clouds_[i_cloud], training_normals_[i_cloud], sampled_point_cloud, sampled_normal_cloud);
|
|
if (sampled_point_cloud->points.empty ())
|
|
continue;
|
|
|
|
shiftCloud (training_clouds_[i_cloud], models_center);
|
|
shiftCloud (sampled_point_cloud, models_center);
|
|
|
|
n_key_points += static_cast<int> (sampled_point_cloud->size ());
|
|
|
|
typename pcl::PointCloud<pcl::Histogram<FeatureSize> >::Ptr feature_cloud (new pcl::PointCloud<pcl::Histogram<FeatureSize> > ());
|
|
estimateFeatures (sampled_point_cloud, sampled_normal_cloud, feature_cloud);
|
|
|
|
int point_index = 0;
|
|
for (auto point_i = sampled_point_cloud->points.cbegin (); point_i != sampled_point_cloud->points.cend (); point_i++, point_index++)
|
|
{
|
|
float descriptor_sum = Eigen::VectorXf::Map ((*feature_cloud)[point_index].histogram, FeatureSize).sum ();
|
|
if (descriptor_sum < std::numeric_limits<float>::epsilon ())
|
|
continue;
|
|
|
|
histograms.insert ( histograms.end (), feature_cloud->begin () + point_index, feature_cloud->begin () + point_index + 1 );
|
|
|
|
int dist = static_cast<int> (std::distance (sampled_point_cloud->points.cbegin (), point_i));
|
|
Eigen::Matrix3f new_basis = alignYCoordWithNormal ((*sampled_normal_cloud)[dist]);
|
|
Eigen::Vector3f zero;
|
|
zero (0) = 0.0;
|
|
zero (1) = 0.0;
|
|
zero (2) = 0.0;
|
|
Eigen::Vector3f new_dir = zero - point_i->getVector3fMap ();
|
|
applyTransform (new_dir, new_basis);
|
|
|
|
PointT point (new_dir[0], new_dir[1], new_dir[2]);
|
|
LocationInfo info (static_cast<unsigned int> (i_cloud), point, *point_i, (*sampled_normal_cloud)[dist]);
|
|
locations.insert(locations.end (), info);
|
|
}
|
|
}//next training cloud
|
|
|
|
return (true);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> bool
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::clusterDescriptors (
|
|
std::vector< pcl::Histogram<FeatureSize> >& histograms,
|
|
Eigen::MatrixXi& labels,
|
|
Eigen::MatrixXf& clusters_centers)
|
|
{
|
|
Eigen::MatrixXf points_to_cluster (histograms.size (), FeatureSize);
|
|
|
|
for (std::size_t i_feature = 0; i_feature < histograms.size (); i_feature++)
|
|
for (int i_dim = 0; i_dim < FeatureSize; i_dim++)
|
|
points_to_cluster (i_feature, i_dim) = histograms[i_feature].histogram[i_dim];
|
|
|
|
labels.resize (histograms.size(), 1);
|
|
computeKMeansClustering (
|
|
points_to_cluster,
|
|
number_of_clusters_,
|
|
labels,
|
|
TermCriteria(TermCriteria::EPS|TermCriteria::COUNT, 10, 0.01f),//1000
|
|
5,
|
|
PP_CENTERS,
|
|
clusters_centers);
|
|
|
|
return (true);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::calculateSigmas (std::vector<float>& sigmas)
|
|
{
|
|
if (!training_sigmas_.empty ())
|
|
{
|
|
sigmas.resize (training_sigmas_.size (), 0.0f);
|
|
for (std::size_t i_sigma = 0; i_sigma < training_sigmas_.size (); i_sigma++)
|
|
sigmas[i_sigma] = training_sigmas_[i_sigma];
|
|
return;
|
|
}
|
|
|
|
sigmas.clear ();
|
|
unsigned int number_of_classes = *std::max_element (training_classes_.begin (), training_classes_.end () ) + 1;
|
|
sigmas.resize (number_of_classes, 0.0f);
|
|
|
|
std::vector<float> vec;
|
|
std::vector<std::vector<float> > objects_sigmas;
|
|
objects_sigmas.resize (number_of_classes, vec);
|
|
|
|
unsigned int number_of_objects = static_cast<unsigned int> (training_clouds_.size ());
|
|
for (unsigned int i_object = 0; i_object < number_of_objects; i_object++)
|
|
{
|
|
float max_distance = 0.0f;
|
|
const auto number_of_points = training_clouds_[i_object]->size ();
|
|
for (unsigned int i_point = 0; i_point < number_of_points - 1; i_point++)
|
|
for (unsigned int j_point = i_point + 1; j_point < number_of_points; j_point++)
|
|
{
|
|
float curr_distance = 0.0f;
|
|
curr_distance += (*training_clouds_[i_object])[i_point].x * (*training_clouds_[i_object])[j_point].x;
|
|
curr_distance += (*training_clouds_[i_object])[i_point].y * (*training_clouds_[i_object])[j_point].y;
|
|
curr_distance += (*training_clouds_[i_object])[i_point].z * (*training_clouds_[i_object])[j_point].z;
|
|
if (curr_distance > max_distance)
|
|
max_distance = curr_distance;
|
|
}
|
|
max_distance = static_cast<float> (sqrt (max_distance));
|
|
unsigned int i_class = training_classes_[i_object];
|
|
objects_sigmas[i_class].push_back (max_distance);
|
|
}
|
|
|
|
for (unsigned int i_class = 0; i_class < number_of_classes; i_class++)
|
|
{
|
|
float sig = 0.0f;
|
|
unsigned int number_of_objects_in_class = static_cast<unsigned int> (objects_sigmas[i_class].size ());
|
|
for (unsigned int i_object = 0; i_object < number_of_objects_in_class; i_object++)
|
|
sig += objects_sigmas[i_class][i_object];
|
|
sig /= (static_cast<float> (number_of_objects_in_class) * 10.0f);
|
|
sigmas[i_class] = sig;
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::calculateWeights (
|
|
const std::vector< LocationInfo, Eigen::aligned_allocator<LocationInfo> >& locations,
|
|
const Eigen::MatrixXi &labels,
|
|
std::vector<float>& sigmas,
|
|
std::vector<std::vector<unsigned int> >& clusters,
|
|
std::vector<std::vector<float> >& statistical_weights,
|
|
std::vector<float>& learned_weights)
|
|
{
|
|
unsigned int number_of_classes = *std::max_element (training_classes_.begin (), training_classes_.end () ) + 1;
|
|
//Temporary variable
|
|
std::vector<float> vec;
|
|
vec.resize (number_of_clusters_, 0.0f);
|
|
statistical_weights.clear ();
|
|
learned_weights.clear ();
|
|
statistical_weights.resize (number_of_classes, vec);
|
|
learned_weights.resize (locations.size (), 0.0f);
|
|
|
|
//Temporary variable
|
|
std::vector<int> vect;
|
|
vect.resize (*std::max_element (training_classes_.begin (), training_classes_.end () ) + 1, 0);
|
|
|
|
//Number of features from which c_i was learned
|
|
std::vector<int> n_ftr;
|
|
|
|
//Total number of votes from visual word v_j
|
|
std::vector<int> n_vot;
|
|
|
|
//Number of visual words that vote for class c_i
|
|
std::vector<int> n_vw;
|
|
|
|
//Number of votes for class c_i from v_j
|
|
std::vector<std::vector<int> > n_vot_2;
|
|
|
|
n_vot_2.resize (number_of_clusters_, vect);
|
|
n_vot.resize (number_of_clusters_, 0);
|
|
n_ftr.resize (number_of_classes, 0);
|
|
for (std::size_t i_location = 0; i_location < locations.size (); i_location++)
|
|
{
|
|
int i_class = training_classes_[locations[i_location].model_num_];
|
|
int i_cluster = labels (i_location);
|
|
n_vot_2[i_cluster][i_class] += 1;
|
|
n_vot[i_cluster] += 1;
|
|
n_ftr[i_class] += 1;
|
|
}
|
|
|
|
n_vw.resize (number_of_classes, 0);
|
|
for (unsigned int i_class = 0; i_class < number_of_classes; i_class++)
|
|
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
|
|
if (n_vot_2[i_cluster][i_class] > 0)
|
|
n_vw[i_class] += 1;
|
|
|
|
//computing learned weights
|
|
learned_weights.resize (locations.size (), 0.0);
|
|
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
|
|
{
|
|
unsigned int number_of_words_in_cluster = static_cast<unsigned int> (clusters[i_cluster].size ());
|
|
for (unsigned int i_visual_word = 0; i_visual_word < number_of_words_in_cluster; i_visual_word++)
|
|
{
|
|
unsigned int i_index = clusters[i_cluster][i_visual_word];
|
|
int i_class = training_classes_[locations[i_index].model_num_];
|
|
float square_sigma_dist = sigmas[i_class] * sigmas[i_class];
|
|
if (square_sigma_dist < std::numeric_limits<float>::epsilon ())
|
|
{
|
|
std::vector<float> calculated_sigmas;
|
|
calculateSigmas (calculated_sigmas);
|
|
square_sigma_dist = calculated_sigmas[i_class] * calculated_sigmas[i_class];
|
|
if (square_sigma_dist < std::numeric_limits<float>::epsilon ())
|
|
continue;
|
|
}
|
|
Eigen::Matrix3f transform = alignYCoordWithNormal (locations[i_index].normal_);
|
|
Eigen::Vector3f direction = locations[i_index].dir_to_center_.getVector3fMap ();
|
|
applyTransform (direction, transform);
|
|
Eigen::Vector3f actual_center = locations[i_index].point_.getVector3fMap () + direction;
|
|
|
|
//collect gaussian weighted distances
|
|
std::vector<float> gauss_dists;
|
|
for (unsigned int j_visual_word = 0; j_visual_word < number_of_words_in_cluster; j_visual_word++)
|
|
{
|
|
unsigned int j_index = clusters[i_cluster][j_visual_word];
|
|
int j_class = training_classes_[locations[j_index].model_num_];
|
|
if (i_class != j_class)
|
|
continue;
|
|
//predict center
|
|
Eigen::Matrix3f transform_2 = alignYCoordWithNormal (locations[j_index].normal_);
|
|
Eigen::Vector3f direction_2 = locations[i_index].dir_to_center_.getVector3fMap ();
|
|
applyTransform (direction_2, transform_2);
|
|
Eigen::Vector3f predicted_center = locations[j_index].point_.getVector3fMap () + direction_2;
|
|
float residual = (predicted_center - actual_center).norm ();
|
|
float value = -residual * residual / square_sigma_dist;
|
|
gauss_dists.push_back (static_cast<float> (std::exp (value)));
|
|
}//next word
|
|
//find median gaussian weighted distance
|
|
std::size_t mid_elem = (gauss_dists.size () - 1) / 2;
|
|
std::nth_element (gauss_dists.begin (), gauss_dists.begin () + mid_elem, gauss_dists.end ());
|
|
learned_weights[i_index] = *(gauss_dists.begin () + mid_elem);
|
|
}//next word
|
|
}//next cluster
|
|
|
|
//computing statistical weights
|
|
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
|
|
{
|
|
for (unsigned int i_class = 0; i_class < number_of_classes; i_class++)
|
|
{
|
|
if (n_vot_2[i_cluster][i_class] == 0)
|
|
continue;//no votes per class of interest in this cluster
|
|
if (n_vw[i_class] == 0)
|
|
continue;//there were no objects of this class in the training dataset
|
|
if (n_vot[i_cluster] == 0)
|
|
continue;//this cluster has never been used
|
|
if (n_ftr[i_class] == 0)
|
|
continue;//there were no objects of this class in the training dataset
|
|
float part_1 = static_cast<float> (n_vw[i_class]);
|
|
float part_2 = static_cast<float> (n_vot[i_cluster]);
|
|
float part_3 = static_cast<float> (n_vot_2[i_cluster][i_class]) / static_cast<float> (n_ftr[i_class]);
|
|
float part_4 = 0.0f;
|
|
|
|
if (!n_vot_ON_)
|
|
part_2 = 1.0f;
|
|
|
|
for (unsigned int j_class = 0; j_class < number_of_classes; j_class++)
|
|
if (n_ftr[j_class] != 0)
|
|
part_4 += static_cast<float> (n_vot_2[i_cluster][j_class]) / static_cast<float> (n_ftr[j_class]);
|
|
|
|
statistical_weights[i_class][i_cluster] = (1.0f / part_1) * (1.0f / part_2) * part_3 / part_4;
|
|
}
|
|
}//next cluster
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::simplifyCloud (
|
|
typename pcl::PointCloud<PointT>::ConstPtr in_point_cloud,
|
|
typename pcl::PointCloud<NormalT>::ConstPtr in_normal_cloud,
|
|
typename pcl::PointCloud<PointT>::Ptr out_sampled_point_cloud,
|
|
typename pcl::PointCloud<NormalT>::Ptr out_sampled_normal_cloud)
|
|
{
|
|
//create voxel grid
|
|
pcl::VoxelGrid<PointT> grid;
|
|
grid.setLeafSize (sampling_size_, sampling_size_, sampling_size_);
|
|
grid.setSaveLeafLayout (true);
|
|
grid.setInputCloud (in_point_cloud);
|
|
|
|
pcl::PointCloud<PointT> temp_cloud;
|
|
grid.filter (temp_cloud);
|
|
|
|
//extract indices of points from source cloud which are closest to grid points
|
|
const float max_value = std::numeric_limits<float>::max ();
|
|
|
|
const auto num_source_points = in_point_cloud->size ();
|
|
const auto num_sample_points = temp_cloud.size ();
|
|
|
|
std::vector<float> dist_to_grid_center (num_sample_points, max_value);
|
|
std::vector<int> sampling_indices (num_sample_points, -1);
|
|
|
|
for (std::size_t i_point = 0; i_point < num_source_points; i_point++)
|
|
{
|
|
int index = grid.getCentroidIndex ((*in_point_cloud)[i_point]);
|
|
if (index == -1)
|
|
continue;
|
|
|
|
PointT pt_1 = (*in_point_cloud)[i_point];
|
|
PointT pt_2 = temp_cloud[index];
|
|
|
|
float distance = (pt_1.x - pt_2.x) * (pt_1.x - pt_2.x) + (pt_1.y - pt_2.y) * (pt_1.y - pt_2.y) + (pt_1.z - pt_2.z) * (pt_1.z - pt_2.z);
|
|
if (distance < dist_to_grid_center[index])
|
|
{
|
|
dist_to_grid_center[index] = distance;
|
|
sampling_indices[index] = static_cast<int> (i_point);
|
|
}
|
|
}
|
|
|
|
//extract source points
|
|
pcl::PointIndices::Ptr final_inliers_indices (new pcl::PointIndices ());
|
|
pcl::ExtractIndices<PointT> extract_points;
|
|
pcl::ExtractIndices<NormalT> extract_normals;
|
|
|
|
final_inliers_indices->indices.reserve (num_sample_points);
|
|
for (std::size_t i_point = 0; i_point < num_sample_points; i_point++)
|
|
{
|
|
if (sampling_indices[i_point] != -1)
|
|
final_inliers_indices->indices.push_back ( sampling_indices[i_point] );
|
|
}
|
|
|
|
extract_points.setInputCloud (in_point_cloud);
|
|
extract_points.setIndices (final_inliers_indices);
|
|
extract_points.filter (*out_sampled_point_cloud);
|
|
|
|
extract_normals.setInputCloud (in_normal_cloud);
|
|
extract_normals.setIndices (final_inliers_indices);
|
|
extract_normals.filter (*out_sampled_normal_cloud);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::shiftCloud (
|
|
typename pcl::PointCloud<PointT>::Ptr in_cloud,
|
|
Eigen::Vector3f shift_point)
|
|
{
|
|
for (auto point_it = in_cloud->points.begin (); point_it != in_cloud->points.end (); point_it++)
|
|
{
|
|
point_it->x -= shift_point.x ();
|
|
point_it->y -= shift_point.y ();
|
|
point_it->z -= shift_point.z ();
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> Eigen::Matrix3f
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::alignYCoordWithNormal (const NormalT& in_normal)
|
|
{
|
|
Eigen::Matrix3f result;
|
|
Eigen::Matrix3f rotation_matrix_X;
|
|
Eigen::Matrix3f rotation_matrix_Z;
|
|
|
|
float A = 0.0f;
|
|
float B = 0.0f;
|
|
float sign = -1.0f;
|
|
|
|
float denom_X = static_cast<float> (sqrt (in_normal.normal_z * in_normal.normal_z + in_normal.normal_y * in_normal.normal_y));
|
|
A = in_normal.normal_y / denom_X;
|
|
B = sign * in_normal.normal_z / denom_X;
|
|
rotation_matrix_X << 1.0f, 0.0f, 0.0f,
|
|
0.0f, A, -B,
|
|
0.0f, B, A;
|
|
|
|
float denom_Z = static_cast<float> (sqrt (in_normal.normal_x * in_normal.normal_x + in_normal.normal_y * in_normal.normal_y));
|
|
A = in_normal.normal_y / denom_Z;
|
|
B = sign * in_normal.normal_x / denom_Z;
|
|
rotation_matrix_Z << A, -B, 0.0f,
|
|
B, A, 0.0f,
|
|
0.0f, 0.0f, 1.0f;
|
|
|
|
result = rotation_matrix_X * rotation_matrix_Z;
|
|
|
|
return (result);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::applyTransform (Eigen::Vector3f& io_vec, const Eigen::Matrix3f& in_transform)
|
|
{
|
|
io_vec = in_transform * io_vec;
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::estimateFeatures (
|
|
typename pcl::PointCloud<PointT>::Ptr sampled_point_cloud,
|
|
typename pcl::PointCloud<NormalT>::Ptr normal_cloud,
|
|
typename pcl::PointCloud<pcl::Histogram<FeatureSize> >::Ptr feature_cloud)
|
|
{
|
|
typename pcl::search::Search<PointT>::Ptr tree (new pcl::search::KdTree<PointT>);
|
|
// tree->setInputCloud (point_cloud);
|
|
|
|
feature_estimator_->setInputCloud (sampled_point_cloud->makeShared ());
|
|
// feature_estimator_->setSearchSurface (point_cloud->makeShared ());
|
|
feature_estimator_->setSearchMethod (tree);
|
|
|
|
// typename pcl::SpinImageEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<FeatureSize> >::Ptr feat_est_norm =
|
|
// dynamic_pointer_cast<pcl::SpinImageEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<FeatureSize> > > (feature_estimator_);
|
|
// feat_est_norm->setInputNormals (normal_cloud);
|
|
|
|
typename pcl::FeatureFromNormals<pcl::PointXYZ, pcl::Normal, pcl::Histogram<FeatureSize> >::Ptr feat_est_norm =
|
|
dynamic_pointer_cast<pcl::FeatureFromNormals<pcl::PointXYZ, pcl::Normal, pcl::Histogram<FeatureSize> > > (feature_estimator_);
|
|
feat_est_norm->setInputNormals (normal_cloud);
|
|
|
|
feature_estimator_->compute (*feature_cloud);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> double
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::computeKMeansClustering (
|
|
const Eigen::MatrixXf& points_to_cluster,
|
|
int number_of_clusters,
|
|
Eigen::MatrixXi& io_labels,
|
|
TermCriteria criteria,
|
|
int attempts,
|
|
int flags,
|
|
Eigen::MatrixXf& cluster_centers)
|
|
{
|
|
const int spp_trials = 3;
|
|
std::size_t number_of_points = points_to_cluster.rows () > 1 ? points_to_cluster.rows () : points_to_cluster.cols ();
|
|
int feature_dimension = points_to_cluster.rows () > 1 ? FeatureSize : 1;
|
|
|
|
attempts = std::max (attempts, 1);
|
|
srand (static_cast<unsigned int> (time (nullptr)));
|
|
|
|
Eigen::MatrixXi labels (number_of_points, 1);
|
|
|
|
if (flags & USE_INITIAL_LABELS)
|
|
labels = io_labels;
|
|
else
|
|
labels.setZero ();
|
|
|
|
Eigen::MatrixXf centers (number_of_clusters, feature_dimension);
|
|
Eigen::MatrixXf old_centers (number_of_clusters, feature_dimension);
|
|
std::vector<int> counters (number_of_clusters);
|
|
std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > boxes (feature_dimension);
|
|
Eigen::Vector2f* box = &boxes[0];
|
|
|
|
double best_compactness = std::numeric_limits<double>::max ();
|
|
double compactness = 0.0;
|
|
|
|
if (criteria.type_ & TermCriteria::EPS)
|
|
criteria.epsilon_ = std::max (criteria.epsilon_, 0.0f);
|
|
else
|
|
criteria.epsilon_ = std::numeric_limits<float>::epsilon ();
|
|
|
|
criteria.epsilon_ *= criteria.epsilon_;
|
|
|
|
if (criteria.type_ & TermCriteria::COUNT)
|
|
criteria.max_count_ = std::min (std::max (criteria.max_count_, 2), 100);
|
|
else
|
|
criteria.max_count_ = 100;
|
|
|
|
if (number_of_clusters == 1)
|
|
{
|
|
attempts = 1;
|
|
criteria.max_count_ = 2;
|
|
}
|
|
|
|
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
|
|
box[i_dim] = Eigen::Vector2f (points_to_cluster (0, i_dim), points_to_cluster (0, i_dim));
|
|
|
|
for (std::size_t i_point = 0; i_point < number_of_points; i_point++)
|
|
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
|
|
{
|
|
float v = points_to_cluster (i_point, i_dim);
|
|
box[i_dim] (0) = std::min (box[i_dim] (0), v);
|
|
box[i_dim] (1) = std::max (box[i_dim] (1), v);
|
|
}
|
|
|
|
for (int i_attempt = 0; i_attempt < attempts; i_attempt++)
|
|
{
|
|
float max_center_shift = std::numeric_limits<float>::max ();
|
|
for (int iter = 0; iter < criteria.max_count_ && max_center_shift > criteria.epsilon_; iter++)
|
|
{
|
|
Eigen::MatrixXf temp (centers.rows (), centers.cols ());
|
|
temp = centers;
|
|
centers = old_centers;
|
|
old_centers = temp;
|
|
|
|
if ( iter == 0 && ( i_attempt > 0 || !(flags & USE_INITIAL_LABELS) ) )
|
|
{
|
|
if (flags & PP_CENTERS)
|
|
generateCentersPP (points_to_cluster, centers, number_of_clusters, spp_trials);
|
|
else
|
|
{
|
|
for (int i_cl_center = 0; i_cl_center < number_of_clusters; i_cl_center++)
|
|
{
|
|
Eigen::VectorXf center (feature_dimension);
|
|
generateRandomCenter (boxes, center);
|
|
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
|
|
centers (i_cl_center, i_dim) = center (i_dim);
|
|
}//generate center for next cluster
|
|
}//end if-else random or PP centers
|
|
}
|
|
else
|
|
{
|
|
centers.setZero ();
|
|
for (int i_cluster = 0; i_cluster < number_of_clusters; i_cluster++)
|
|
counters[i_cluster] = 0;
|
|
for (std::size_t i_point = 0; i_point < number_of_points; i_point++)
|
|
{
|
|
int i_label = labels (i_point, 0);
|
|
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
|
|
centers (i_label, i_dim) += points_to_cluster (i_point, i_dim);
|
|
counters[i_label]++;
|
|
}
|
|
if (iter > 0)
|
|
max_center_shift = 0.0f;
|
|
for (int i_cl_center = 0; i_cl_center < number_of_clusters; i_cl_center++)
|
|
{
|
|
if (counters[i_cl_center] != 0)
|
|
{
|
|
float scale = 1.0f / static_cast<float> (counters[i_cl_center]);
|
|
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
|
|
centers (i_cl_center, i_dim) *= scale;
|
|
}
|
|
else
|
|
{
|
|
Eigen::VectorXf center (feature_dimension);
|
|
generateRandomCenter (boxes, center);
|
|
for(int i_dim = 0; i_dim < feature_dimension; i_dim++)
|
|
centers (i_cl_center, i_dim) = center (i_dim);
|
|
}
|
|
|
|
if (iter > 0)
|
|
{
|
|
float dist = 0.0f;
|
|
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
|
|
{
|
|
float diff = centers (i_cl_center, i_dim) - old_centers (i_cl_center, i_dim);
|
|
dist += diff * diff;
|
|
}
|
|
max_center_shift = std::max (max_center_shift, dist);
|
|
}
|
|
}
|
|
}
|
|
compactness = 0.0f;
|
|
for (std::size_t i_point = 0; i_point < number_of_points; i_point++)
|
|
{
|
|
Eigen::VectorXf sample (feature_dimension);
|
|
sample = points_to_cluster.row (i_point);
|
|
|
|
int k_best = 0;
|
|
float min_dist = std::numeric_limits<float>::max ();
|
|
|
|
for (int i_cluster = 0; i_cluster < number_of_clusters; i_cluster++)
|
|
{
|
|
Eigen::VectorXf center (feature_dimension);
|
|
center = centers.row (i_cluster);
|
|
float dist = computeDistance (sample, center);
|
|
if (min_dist > dist)
|
|
{
|
|
min_dist = dist;
|
|
k_best = i_cluster;
|
|
}
|
|
}
|
|
compactness += min_dist;
|
|
labels (i_point, 0) = k_best;
|
|
}
|
|
}//next iteration
|
|
|
|
if (compactness < best_compactness)
|
|
{
|
|
best_compactness = compactness;
|
|
cluster_centers = centers;
|
|
io_labels = labels;
|
|
}
|
|
}//next attempt
|
|
|
|
return (best_compactness);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::generateCentersPP (
|
|
const Eigen::MatrixXf& data,
|
|
Eigen::MatrixXf& out_centers,
|
|
int number_of_clusters,
|
|
int trials)
|
|
{
|
|
std::size_t dimension = data.cols ();
|
|
unsigned int number_of_points = static_cast<unsigned int> (data.rows ());
|
|
std::vector<int> centers_vec (number_of_clusters);
|
|
int* centers = ¢ers_vec[0];
|
|
std::vector<double> dist (number_of_points);
|
|
std::vector<double> tdist (number_of_points);
|
|
std::vector<double> tdist2 (number_of_points);
|
|
double sum0 = 0.0;
|
|
|
|
unsigned int random_unsigned = rand ();
|
|
centers[0] = random_unsigned % number_of_points;
|
|
|
|
for (unsigned int i_point = 0; i_point < number_of_points; i_point++)
|
|
{
|
|
Eigen::VectorXf first (dimension);
|
|
Eigen::VectorXf second (dimension);
|
|
first = data.row (i_point);
|
|
second = data.row (centers[0]);
|
|
dist[i_point] = computeDistance (first, second);
|
|
sum0 += dist[i_point];
|
|
}
|
|
|
|
for (int i_cluster = 0; i_cluster < number_of_clusters; i_cluster++)
|
|
{
|
|
double best_sum = std::numeric_limits<double>::max ();
|
|
int best_center = -1;
|
|
for (int i_trials = 0; i_trials < trials; i_trials++)
|
|
{
|
|
unsigned int random_integer = rand () - 1;
|
|
double random_double = static_cast<double> (random_integer) / static_cast<double> (std::numeric_limits<unsigned int>::max ());
|
|
double p = random_double * sum0;
|
|
|
|
unsigned int i_point;
|
|
for (i_point = 0; i_point < number_of_points - 1; i_point++)
|
|
if ( (p -= dist[i_point]) <= 0.0)
|
|
break;
|
|
|
|
int ci = i_point;
|
|
|
|
double s = 0.0;
|
|
for (unsigned int i_point = 0; i_point < number_of_points; i_point++)
|
|
{
|
|
Eigen::VectorXf first (dimension);
|
|
Eigen::VectorXf second (dimension);
|
|
first = data.row (i_point);
|
|
second = data.row (ci);
|
|
tdist2[i_point] = std::min (static_cast<double> (computeDistance (first, second)), dist[i_point]);
|
|
s += tdist2[i_point];
|
|
}
|
|
|
|
if (s <= best_sum)
|
|
{
|
|
best_sum = s;
|
|
best_center = ci;
|
|
std::swap (tdist, tdist2);
|
|
}
|
|
}
|
|
|
|
centers[i_cluster] = best_center;
|
|
sum0 = best_sum;
|
|
std::swap (dist, tdist);
|
|
}
|
|
|
|
for (int i_cluster = 0; i_cluster < number_of_clusters; i_cluster++)
|
|
for (std::size_t i_dim = 0; i_dim < dimension; i_dim++)
|
|
out_centers (i_cluster, i_dim) = data (centers[i_cluster], i_dim);
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> void
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::generateRandomCenter (const std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> >& boxes,
|
|
Eigen::VectorXf& center)
|
|
{
|
|
std::size_t dimension = boxes.size ();
|
|
float margin = 1.0f / static_cast<float> (dimension);
|
|
|
|
for (std::size_t i_dim = 0; i_dim < dimension; i_dim++)
|
|
{
|
|
unsigned int random_integer = rand () - 1;
|
|
float random_float = static_cast<float> (random_integer) / static_cast<float> (std::numeric_limits<unsigned int>::max ());
|
|
center (i_dim) = (random_float * (1.0f + margin * 2.0f)- margin) * (boxes[i_dim] (1) - boxes[i_dim] (0)) + boxes[i_dim] (0);
|
|
}
|
|
}
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <int FeatureSize, typename PointT, typename NormalT> float
|
|
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::computeDistance (Eigen::VectorXf& vec_1, Eigen::VectorXf& vec_2)
|
|
{
|
|
std::size_t dimension = vec_1.rows () > 1 ? vec_1.rows () : vec_1.cols ();
|
|
float distance = 0.0f;
|
|
for(std::size_t i_dim = 0; i_dim < dimension; i_dim++)
|
|
{
|
|
float diff = vec_1 (i_dim) - vec_2 (i_dim);
|
|
distance += diff * diff;
|
|
}
|
|
|
|
return (distance);
|
|
}
|
|
|
|
#endif //#ifndef PCL_IMPLICIT_SHAPE_MODEL_HPP_
|