1532 lines
60 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2011, Willow Garage, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*
* Implementation of the ISM algorithm described in "Hough Transforms and 3D SURF for robust three dimensional classication"
* by Jan Knopp, Mukta Prasad, Geert Willems, Radu Timofte, and Luc Van Gool
*
* Authors: Roman Shapovalov, Alexander Velizhev, Sergey Ushakov
*/
#ifndef PCL_IMPLICIT_SHAPE_MODEL_HPP_
#define PCL_IMPLICIT_SHAPE_MODEL_HPP_
#include "../implicit_shape_model.h"
#include <pcl/filters/voxel_grid.h> // for VoxelGrid
#include <pcl/filters/extract_indices.h> // for ExtractIndices
#include <pcl/memory.h> // for dynamic_pointer_cast
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT>
pcl::features::ISMVoteList<PointT>::ISMVoteList () :
votes_ (new pcl::PointCloud<pcl::InterestPoint> ()),
tree_is_valid_ (false),
votes_origins_ (new pcl::PointCloud<PointT> ()),
votes_class_ (0),
k_ind_ (0),
k_sqr_dist_ (0)
{
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT>
pcl::features::ISMVoteList<PointT>::~ISMVoteList ()
{
votes_class_.clear ();
votes_origins_.reset ();
votes_.reset ();
k_ind_.clear ();
k_sqr_dist_.clear ();
tree_.reset ();
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::features::ISMVoteList<PointT>::addVote (
pcl::InterestPoint& vote, const PointT &vote_origin, int votes_class)
{
tree_is_valid_ = false;
votes_->points.insert (votes_->points.end (), vote);// TODO: adjust height and width
votes_origins_->points.push_back (vote_origin);
votes_class_.push_back (votes_class);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> typename pcl::PointCloud<pcl::PointXYZRGB>::Ptr
pcl::features::ISMVoteList<PointT>::getColoredCloud (typename pcl::PointCloud<PointT>::Ptr cloud)
{
pcl::PointXYZRGB point;
pcl::PointCloud<pcl::PointXYZRGB>::Ptr colored_cloud = (new pcl::PointCloud<pcl::PointXYZRGB>)->makeShared ();
colored_cloud->height = 0;
colored_cloud->width = 1;
if (cloud != nullptr)
{
colored_cloud->height += cloud->size ();
point.r = 255;
point.g = 255;
point.b = 255;
for (const auto& i_point: *cloud)
{
point.x = i_point.x;
point.y = i_point.y;
point.z = i_point.z;
colored_cloud->points.push_back (point);
}
}
point.r = 0;
point.g = 0;
point.b = 255;
for (const auto &i_vote : votes_->points)
{
point.x = i_vote.x;
point.y = i_vote.y;
point.z = i_vote.z;
colored_cloud->points.push_back (point);
}
colored_cloud->height += votes_->size ();
return (colored_cloud);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::features::ISMVoteList<PointT>::findStrongestPeaks (
std::vector<pcl::ISMPeak, Eigen::aligned_allocator<pcl::ISMPeak> > &out_peaks,
int in_class_id,
double in_non_maxima_radius,
double in_sigma)
{
validateTree ();
const std::size_t n_vote_classes = votes_class_.size ();
if (n_vote_classes == 0)
return;
for (std::size_t i = 0; i < n_vote_classes ; i++)
assert ( votes_class_[i] == in_class_id );
// heuristic: start from NUM_INIT_PTS different locations selected uniformly
// on the votes. Intuitively, it is likely to get a good location in dense regions.
const int NUM_INIT_PTS = 100;
double SIGMA_DIST = in_sigma;// rule of thumb: 10% of the object radius
const double FINAL_EPS = SIGMA_DIST / 100;// another heuristic
std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f> > peaks (NUM_INIT_PTS);
std::vector<double> peak_densities (NUM_INIT_PTS);
double max_density = -1.0;
for (int i = 0; i < NUM_INIT_PTS; i++)
{
Eigen::Vector3f old_center;
const auto idx = votes_->size() * i / NUM_INIT_PTS;
Eigen::Vector3f curr_center = (*votes_)[idx].getVector3fMap();
do
{
old_center = curr_center;
curr_center = shiftMean (old_center, SIGMA_DIST);
} while ((old_center - curr_center).norm () > FINAL_EPS);
pcl::PointXYZ point;
point.x = curr_center (0);
point.y = curr_center (1);
point.z = curr_center (2);
double curr_density = getDensityAtPoint (point, SIGMA_DIST);
assert (curr_density >= 0.0);
peaks[i] = curr_center;
peak_densities[i] = curr_density;
if ( max_density < curr_density )
max_density = curr_density;
}
//extract peaks
std::vector<bool> peak_flag (NUM_INIT_PTS, true);
for (int i_peak = 0; i_peak < NUM_INIT_PTS; i_peak++)
{
// find best peak with taking into consideration peak flags
double best_density = -1.0;
Eigen::Vector3f strongest_peak;
int best_peak_ind (-1);
int peak_counter (0);
for (int i = 0; i < NUM_INIT_PTS; i++)
{
if ( !peak_flag[i] )
continue;
if ( peak_densities[i] > best_density)
{
best_density = peak_densities[i];
strongest_peak = peaks[i];
best_peak_ind = i;
}
++peak_counter;
}
if( peak_counter == 0 )
break;// no peaks
pcl::ISMPeak peak;
peak.x = strongest_peak(0);
peak.y = strongest_peak(1);
peak.z = strongest_peak(2);
peak.density = best_density;
peak.class_id = in_class_id;
out_peaks.push_back ( peak );
// mark best peaks and all its neighbors
peak_flag[best_peak_ind] = false;
for (int i = 0; i < NUM_INIT_PTS; i++)
{
// compute distance between best peak and all unmarked peaks
if ( !peak_flag[i] )
continue;
double dist = (strongest_peak - peaks[i]).norm ();
if ( dist < in_non_maxima_radius )
peak_flag[i] = false;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> void
pcl::features::ISMVoteList<PointT>::validateTree ()
{
if (!tree_is_valid_)
{
if (tree_ == nullptr)
tree_.reset (new pcl::KdTreeFLANN<pcl::InterestPoint>);
tree_->setInputCloud (votes_);
k_ind_.resize ( votes_->size (), -1 );
k_sqr_dist_.resize ( votes_->size (), 0.0f );
tree_is_valid_ = true;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> Eigen::Vector3f
pcl::features::ISMVoteList<PointT>::shiftMean (const Eigen::Vector3f& snap_pt, const double in_sigma_dist)
{
validateTree ();
Eigen::Vector3f wgh_sum (0.0, 0.0, 0.0);
double denom = 0.0;
pcl::InterestPoint pt;
pt.x = snap_pt[0];
pt.y = snap_pt[1];
pt.z = snap_pt[2];
std::size_t n_pts = tree_->radiusSearch (pt, 3*in_sigma_dist, k_ind_, k_sqr_dist_);
for (std::size_t j = 0; j < n_pts; j++)
{
double kernel = (*votes_)[k_ind_[j]].strength * std::exp (-k_sqr_dist_[j] / (in_sigma_dist * in_sigma_dist));
Eigen::Vector3f vote_vec ((*votes_)[k_ind_[j]].x, (*votes_)[k_ind_[j]].y, (*votes_)[k_ind_[j]].z);
wgh_sum += vote_vec * static_cast<float> (kernel);
denom += kernel;
}
assert (denom > 0.0); // at least one point is close. In fact, this case should be handled too
return (wgh_sum / static_cast<float> (denom));
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> double
pcl::features::ISMVoteList<PointT>::getDensityAtPoint (
const PointT &point, double sigma_dist)
{
validateTree ();
const std::size_t n_vote_classes = votes_class_.size ();
if (n_vote_classes == 0)
return (0.0);
double sum_vote = 0.0;
pcl::InterestPoint pt;
pt.x = point.x;
pt.y = point.y;
pt.z = point.z;
std::size_t num_of_pts = tree_->radiusSearch (pt, 3 * sigma_dist, k_ind_, k_sqr_dist_);
for (std::size_t j = 0; j < num_of_pts; j++)
sum_vote += (*votes_)[k_ind_[j]].strength * std::exp (-k_sqr_dist_[j] / (sigma_dist * sigma_dist));
return (sum_vote);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT> unsigned int
pcl::features::ISMVoteList<PointT>::getNumberOfVotes ()
{
return (static_cast<unsigned int> (votes_->size ()));
}
//////////////////////////////////////////////////////////////////////////////////////////////
pcl::features::ISMModel::ISMModel () :
statistical_weights_ (0),
learned_weights_ (0),
classes_ (0),
sigmas_ (0),
clusters_ (0),
number_of_classes_ (0),
number_of_visual_words_ (0),
number_of_clusters_ (0),
descriptors_dimension_ (0)
{
}
//////////////////////////////////////////////////////////////////////////////////////////////
pcl::features::ISMModel::ISMModel (ISMModel const & copy)
{
reset ();
this->number_of_classes_ = copy.number_of_classes_;
this->number_of_visual_words_ = copy.number_of_visual_words_;
this->number_of_clusters_ = copy.number_of_clusters_;
this->descriptors_dimension_ = copy.descriptors_dimension_;
std::vector<float> vec;
vec.resize (this->number_of_clusters_, 0.0f);
this->statistical_weights_.resize (this->number_of_classes_, vec);
for (unsigned int i_class = 0; i_class < this->number_of_classes_; i_class++)
for (unsigned int i_cluster = 0; i_cluster < this->number_of_clusters_; i_cluster++)
this->statistical_weights_[i_class][i_cluster] = copy.statistical_weights_[i_class][i_cluster];
this->learned_weights_.resize (this->number_of_visual_words_, 0.0f);
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
this->learned_weights_[i_visual_word] = copy.learned_weights_[i_visual_word];
this->classes_.resize (this->number_of_visual_words_, 0);
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
this->classes_[i_visual_word] = copy.classes_[i_visual_word];
this->sigmas_.resize (this->number_of_classes_, 0.0f);
for (unsigned int i_class = 0; i_class < this->number_of_classes_; i_class++)
this->sigmas_[i_class] = copy.sigmas_[i_class];
this->directions_to_center_.resize (this->number_of_visual_words_, 3);
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
for (unsigned int i_dim = 0; i_dim < 3; i_dim++)
this->directions_to_center_ (i_visual_word, i_dim) = copy.directions_to_center_ (i_visual_word, i_dim);
this->clusters_centers_.resize (this->number_of_clusters_, 3);
for (unsigned int i_cluster = 0; i_cluster < this->number_of_clusters_; i_cluster++)
for (unsigned int i_dim = 0; i_dim < this->descriptors_dimension_; i_dim++)
this->clusters_centers_ (i_cluster, i_dim) = copy.clusters_centers_ (i_cluster, i_dim);
}
//////////////////////////////////////////////////////////////////////////////////////////////
pcl::features::ISMModel::~ISMModel ()
{
reset ();
}
//////////////////////////////////////////////////////////////////////////////////////////////
bool
pcl::features::ISMModel::saveModelToFile (std::string& file_name)
{
std::ofstream output_file (file_name.c_str (), std::ios::trunc);
if (!output_file)
{
output_file.close ();
return (false);
}
output_file << number_of_classes_ << " ";
output_file << number_of_visual_words_ << " ";
output_file << number_of_clusters_ << " ";
output_file << descriptors_dimension_ << " ";
//write statistical weights
for (unsigned int i_class = 0; i_class < number_of_classes_; i_class++)
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
output_file << statistical_weights_[i_class][i_cluster] << " ";
//write learned weights
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
output_file << learned_weights_[i_visual_word] << " ";
//write classes
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
output_file << classes_[i_visual_word] << " ";
//write sigmas
for (unsigned int i_class = 0; i_class < number_of_classes_; i_class++)
output_file << sigmas_[i_class] << " ";
//write directions to centers
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
for (unsigned int i_dim = 0; i_dim < 3; i_dim++)
output_file << directions_to_center_ (i_visual_word, i_dim) << " ";
//write clusters centers
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
for (unsigned int i_dim = 0; i_dim < descriptors_dimension_; i_dim++)
output_file << clusters_centers_ (i_cluster, i_dim) << " ";
//write clusters
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
{
output_file << static_cast<unsigned int> (clusters_[i_cluster].size ()) << " ";
for (const unsigned int &visual_word : clusters_[i_cluster])
output_file << visual_word << " ";
}
output_file.close ();
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////
bool
pcl::features::ISMModel::loadModelFromfile (std::string& file_name)
{
reset ();
std::ifstream input_file (file_name.c_str ());
if (!input_file)
{
input_file.close ();
return (false);
}
char line[256];
input_file.getline (line, 256, ' ');
number_of_classes_ = static_cast<unsigned int> (strtol (line, nullptr, 10));
input_file.getline (line, 256, ' '); number_of_visual_words_ = atoi (line);
input_file.getline (line, 256, ' '); number_of_clusters_ = atoi (line);
input_file.getline (line, 256, ' '); descriptors_dimension_ = atoi (line);
//read statistical weights
std::vector<float> vec;
vec.resize (number_of_clusters_, 0.0f);
statistical_weights_.resize (number_of_classes_, vec);
for (unsigned int i_class = 0; i_class < number_of_classes_; i_class++)
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
input_file >> statistical_weights_[i_class][i_cluster];
//read learned weights
learned_weights_.resize (number_of_visual_words_, 0.0f);
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
input_file >> learned_weights_[i_visual_word];
//read classes
classes_.resize (number_of_visual_words_, 0);
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
input_file >> classes_[i_visual_word];
//read sigmas
sigmas_.resize (number_of_classes_, 0.0f);
for (unsigned int i_class = 0; i_class < number_of_classes_; i_class++)
input_file >> sigmas_[i_class];
//read directions to centers
directions_to_center_.resize (number_of_visual_words_, 3);
for (unsigned int i_visual_word = 0; i_visual_word < number_of_visual_words_; i_visual_word++)
for (unsigned int i_dim = 0; i_dim < 3; i_dim++)
input_file >> directions_to_center_ (i_visual_word, i_dim);
//read clusters centers
clusters_centers_.resize (number_of_clusters_, descriptors_dimension_);
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
for (unsigned int i_dim = 0; i_dim < descriptors_dimension_; i_dim++)
input_file >> clusters_centers_ (i_cluster, i_dim);
//read clusters
std::vector<unsigned int> vect;
clusters_.resize (number_of_clusters_, vect);
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
{
unsigned int size_of_current_cluster = 0;
input_file >> size_of_current_cluster;
clusters_[i_cluster].resize (size_of_current_cluster, 0);
for (unsigned int i_visual_word = 0; i_visual_word < size_of_current_cluster; i_visual_word++)
input_file >> clusters_[i_cluster][i_visual_word];
}
input_file.close ();
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////
void
pcl::features::ISMModel::reset ()
{
statistical_weights_.clear ();
learned_weights_.clear ();
classes_.clear ();
sigmas_.clear ();
directions_to_center_.resize (0, 0);
clusters_centers_.resize (0, 0);
clusters_.clear ();
number_of_classes_ = 0;
number_of_visual_words_ = 0;
number_of_clusters_ = 0;
descriptors_dimension_ = 0;
}
//////////////////////////////////////////////////////////////////////////////////////////////
pcl::features::ISMModel&
pcl::features::ISMModel::operator = (const pcl::features::ISMModel& other)
{
if (this != &other)
{
this->reset ();
this->number_of_classes_ = other.number_of_classes_;
this->number_of_visual_words_ = other.number_of_visual_words_;
this->number_of_clusters_ = other.number_of_clusters_;
this->descriptors_dimension_ = other.descriptors_dimension_;
std::vector<float> vec;
vec.resize (number_of_clusters_, 0.0f);
this->statistical_weights_.resize (this->number_of_classes_, vec);
for (unsigned int i_class = 0; i_class < this->number_of_classes_; i_class++)
for (unsigned int i_cluster = 0; i_cluster < this->number_of_clusters_; i_cluster++)
this->statistical_weights_[i_class][i_cluster] = other.statistical_weights_[i_class][i_cluster];
this->learned_weights_.resize (this->number_of_visual_words_, 0.0f);
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
this->learned_weights_[i_visual_word] = other.learned_weights_[i_visual_word];
this->classes_.resize (this->number_of_visual_words_, 0);
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
this->classes_[i_visual_word] = other.classes_[i_visual_word];
this->sigmas_.resize (this->number_of_classes_, 0.0f);
for (unsigned int i_class = 0; i_class < this->number_of_classes_; i_class++)
this->sigmas_[i_class] = other.sigmas_[i_class];
this->directions_to_center_.resize (this->number_of_visual_words_, 3);
for (unsigned int i_visual_word = 0; i_visual_word < this->number_of_visual_words_; i_visual_word++)
for (unsigned int i_dim = 0; i_dim < 3; i_dim++)
this->directions_to_center_ (i_visual_word, i_dim) = other.directions_to_center_ (i_visual_word, i_dim);
this->clusters_centers_.resize (this->number_of_clusters_, 3);
for (unsigned int i_cluster = 0; i_cluster < this->number_of_clusters_; i_cluster++)
for (unsigned int i_dim = 0; i_dim < this->descriptors_dimension_; i_dim++)
this->clusters_centers_ (i_cluster, i_dim) = other.clusters_centers_ (i_cluster, i_dim);
}
return (*this);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT>
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::ImplicitShapeModelEstimation () :
training_clouds_ (0),
training_classes_ (0),
training_normals_ (0),
training_sigmas_ (0),
sampling_size_ (0.1f),
feature_estimator_ (),
number_of_clusters_ (184),
n_vot_ON_ (true)
{
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT>
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::~ImplicitShapeModelEstimation ()
{
training_clouds_.clear ();
training_classes_.clear ();
training_normals_.clear ();
training_sigmas_.clear ();
feature_estimator_.reset ();
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> std::vector<typename pcl::PointCloud<PointT>::Ptr>
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getTrainingClouds ()
{
return (training_clouds_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setTrainingClouds (
const std::vector< typename pcl::PointCloud<PointT>::Ptr >& training_clouds)
{
training_clouds_.clear ();
std::vector<typename pcl::PointCloud<PointT>::Ptr > clouds ( training_clouds.begin (), training_clouds.end () );
training_clouds_.swap (clouds);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> std::vector<unsigned int>
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getTrainingClasses ()
{
return (training_classes_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setTrainingClasses (const std::vector<unsigned int>& training_classes)
{
training_classes_.clear ();
std::vector<unsigned int> classes ( training_classes.begin (), training_classes.end () );
training_classes_.swap (classes);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> std::vector<typename pcl::PointCloud<NormalT>::Ptr>
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getTrainingNormals ()
{
return (training_normals_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setTrainingNormals (
const std::vector< typename pcl::PointCloud<NormalT>::Ptr >& training_normals)
{
training_normals_.clear ();
std::vector<typename pcl::PointCloud<NormalT>::Ptr > normals ( training_normals.begin (), training_normals.end () );
training_normals_.swap (normals);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> float
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getSamplingSize ()
{
return (sampling_size_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setSamplingSize (float sampling_size)
{
if (sampling_size >= std::numeric_limits<float>::epsilon ())
sampling_size_ = sampling_size;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> typename pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::FeaturePtr
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getFeatureEstimator ()
{
return (feature_estimator_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setFeatureEstimator (FeaturePtr feature)
{
feature_estimator_ = feature;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> unsigned int
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getNumberOfClusters ()
{
return (number_of_clusters_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setNumberOfClusters (unsigned int num_of_clusters)
{
if (num_of_clusters > 0)
number_of_clusters_ = num_of_clusters;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> std::vector<float>
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getSigmaDists ()
{
return (training_sigmas_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setSigmaDists (const std::vector<float>& training_sigmas)
{
training_sigmas_.clear ();
std::vector<float> sigmas ( training_sigmas.begin (), training_sigmas.end () );
training_sigmas_.swap (sigmas);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> bool
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::getNVotState ()
{
return (n_vot_ON_);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::setNVotState (bool state)
{
n_vot_ON_ = state;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> bool
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::trainISM (ISMModelPtr& trained_model)
{
bool success = true;
if (trained_model == nullptr)
return (false);
trained_model->reset ();
std::vector<pcl::Histogram<FeatureSize> > histograms;
std::vector<LocationInfo, Eigen::aligned_allocator<LocationInfo> > locations;
success = extractDescriptors (histograms, locations);
if (!success)
return (false);
Eigen::MatrixXi labels;
success = clusterDescriptors(histograms, labels, trained_model->clusters_centers_);
if (!success)
return (false);
std::vector<unsigned int> vec;
trained_model->clusters_.resize (number_of_clusters_, vec);
for (std::size_t i_label = 0; i_label < locations.size (); i_label++)
trained_model->clusters_[labels (i_label)].push_back (i_label);
calculateSigmas (trained_model->sigmas_);
calculateWeights(
locations,
labels,
trained_model->sigmas_,
trained_model->clusters_,
trained_model->statistical_weights_,
trained_model->learned_weights_);
trained_model->number_of_classes_ = *std::max_element (training_classes_.begin (), training_classes_.end () ) + 1;
trained_model->number_of_visual_words_ = static_cast<unsigned int> (histograms.size ());
trained_model->number_of_clusters_ = number_of_clusters_;
trained_model->descriptors_dimension_ = FeatureSize;
trained_model->directions_to_center_.resize (locations.size (), 3);
trained_model->classes_.resize (locations.size ());
for (std::size_t i_dir = 0; i_dir < locations.size (); i_dir++)
{
trained_model->directions_to_center_(i_dir, 0) = locations[i_dir].dir_to_center_.x;
trained_model->directions_to_center_(i_dir, 1) = locations[i_dir].dir_to_center_.y;
trained_model->directions_to_center_(i_dir, 2) = locations[i_dir].dir_to_center_.z;
trained_model->classes_[i_dir] = training_classes_[locations[i_dir].model_num_];
}
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> typename pcl::features::ISMVoteList<PointT>::Ptr
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::findObjects (
ISMModelPtr model,
typename pcl::PointCloud<PointT>::Ptr in_cloud,
typename pcl::PointCloud<Normal>::Ptr in_normals,
int in_class_of_interest)
{
typename pcl::features::ISMVoteList<PointT>::Ptr out_votes (new pcl::features::ISMVoteList<PointT> ());
if (in_cloud->points.empty ())
return (out_votes);
typename pcl::PointCloud<PointT>::Ptr sampled_point_cloud (new pcl::PointCloud<PointT> ());
typename pcl::PointCloud<NormalT>::Ptr sampled_normal_cloud (new pcl::PointCloud<NormalT> ());
simplifyCloud (in_cloud, in_normals, sampled_point_cloud, sampled_normal_cloud);
if (sampled_point_cloud->points.empty ())
return (out_votes);
typename pcl::PointCloud<pcl::Histogram<FeatureSize> >::Ptr feature_cloud (new pcl::PointCloud<pcl::Histogram<FeatureSize> > ());
estimateFeatures (sampled_point_cloud, sampled_normal_cloud, feature_cloud);
//find nearest cluster
const unsigned int n_key_points = static_cast<unsigned int> (sampled_point_cloud->size ());
std::vector<int> min_dist_inds (n_key_points, -1);
for (unsigned int i_point = 0; i_point < n_key_points; i_point++)
{
Eigen::VectorXf curr_descriptor (FeatureSize);
for (int i_dim = 0; i_dim < FeatureSize; i_dim++)
curr_descriptor (i_dim) = (*feature_cloud)[i_point].histogram[i_dim];
float descriptor_sum = curr_descriptor.sum ();
if (descriptor_sum < std::numeric_limits<float>::epsilon ())
continue;
unsigned int min_dist_idx = 0;
Eigen::VectorXf clusters_center (FeatureSize);
for (int i_dim = 0; i_dim < FeatureSize; i_dim++)
clusters_center (i_dim) = model->clusters_centers_ (min_dist_idx, i_dim);
float best_dist = computeDistance (curr_descriptor, clusters_center);
for (unsigned int i_clust_cent = 0; i_clust_cent < number_of_clusters_; i_clust_cent++)
{
for (int i_dim = 0; i_dim < FeatureSize; i_dim++)
clusters_center (i_dim) = model->clusters_centers_ (i_clust_cent, i_dim);
float curr_dist = computeDistance (clusters_center, curr_descriptor);
if (curr_dist < best_dist)
{
min_dist_idx = i_clust_cent;
best_dist = curr_dist;
}
}
min_dist_inds[i_point] = min_dist_idx;
}//next keypoint
for (std::size_t i_point = 0; i_point < n_key_points; i_point++)
{
int min_dist_idx = min_dist_inds[i_point];
if (min_dist_idx == -1)
continue;
const unsigned int n_words = static_cast<unsigned int> (model->clusters_[min_dist_idx].size ());
//compute coord system transform
Eigen::Matrix3f transform = alignYCoordWithNormal ((*sampled_normal_cloud)[i_point]);
for (unsigned int i_word = 0; i_word < n_words; i_word++)
{
unsigned int index = model->clusters_[min_dist_idx][i_word];
unsigned int i_class = model->classes_[index];
if (static_cast<int> (i_class) != in_class_of_interest)
continue;//skip this class
//rotate dir to center as needed
Eigen::Vector3f direction (
model->directions_to_center_(index, 0),
model->directions_to_center_(index, 1),
model->directions_to_center_(index, 2));
applyTransform (direction, transform.transpose ());
pcl::InterestPoint vote;
Eigen::Vector3f vote_pos = (*sampled_point_cloud)[i_point].getVector3fMap () + direction;
vote.x = vote_pos[0];
vote.y = vote_pos[1];
vote.z = vote_pos[2];
float statistical_weight = model->statistical_weights_[in_class_of_interest][min_dist_idx];
float learned_weight = model->learned_weights_[index];
float power = statistical_weight * learned_weight;
vote.strength = power;
if (vote.strength > std::numeric_limits<float>::epsilon ())
out_votes->addVote (vote, (*sampled_point_cloud)[i_point], i_class);
}
}//next point
return (out_votes);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> bool
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::extractDescriptors (
std::vector< pcl::Histogram<FeatureSize> >& histograms,
std::vector< LocationInfo, Eigen::aligned_allocator<LocationInfo> >& locations)
{
histograms.clear ();
locations.clear ();
int n_key_points = 0;
if (training_clouds_.empty () || training_classes_.empty () || feature_estimator_ == nullptr)
return (false);
for (std::size_t i_cloud = 0; i_cloud < training_clouds_.size (); i_cloud++)
{
//compute the center of the training object
Eigen::Vector3f models_center (0.0f, 0.0f, 0.0f);
const auto num_of_points = training_clouds_[i_cloud]->size ();
for (auto point_j = training_clouds_[i_cloud]->begin (); point_j != training_clouds_[i_cloud]->end (); point_j++)
models_center += point_j->getVector3fMap ();
models_center /= static_cast<float> (num_of_points);
//downsample the cloud
typename pcl::PointCloud<PointT>::Ptr sampled_point_cloud (new pcl::PointCloud<PointT> ());
typename pcl::PointCloud<NormalT>::Ptr sampled_normal_cloud (new pcl::PointCloud<NormalT> ());
simplifyCloud (training_clouds_[i_cloud], training_normals_[i_cloud], sampled_point_cloud, sampled_normal_cloud);
if (sampled_point_cloud->points.empty ())
continue;
shiftCloud (training_clouds_[i_cloud], models_center);
shiftCloud (sampled_point_cloud, models_center);
n_key_points += static_cast<int> (sampled_point_cloud->size ());
typename pcl::PointCloud<pcl::Histogram<FeatureSize> >::Ptr feature_cloud (new pcl::PointCloud<pcl::Histogram<FeatureSize> > ());
estimateFeatures (sampled_point_cloud, sampled_normal_cloud, feature_cloud);
int point_index = 0;
for (auto point_i = sampled_point_cloud->points.cbegin (); point_i != sampled_point_cloud->points.cend (); point_i++, point_index++)
{
float descriptor_sum = Eigen::VectorXf::Map ((*feature_cloud)[point_index].histogram, FeatureSize).sum ();
if (descriptor_sum < std::numeric_limits<float>::epsilon ())
continue;
histograms.insert ( histograms.end (), feature_cloud->begin () + point_index, feature_cloud->begin () + point_index + 1 );
int dist = static_cast<int> (std::distance (sampled_point_cloud->points.cbegin (), point_i));
Eigen::Matrix3f new_basis = alignYCoordWithNormal ((*sampled_normal_cloud)[dist]);
Eigen::Vector3f zero;
zero (0) = 0.0;
zero (1) = 0.0;
zero (2) = 0.0;
Eigen::Vector3f new_dir = zero - point_i->getVector3fMap ();
applyTransform (new_dir, new_basis);
PointT point (new_dir[0], new_dir[1], new_dir[2]);
LocationInfo info (static_cast<unsigned int> (i_cloud), point, *point_i, (*sampled_normal_cloud)[dist]);
locations.insert(locations.end (), info);
}
}//next training cloud
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> bool
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::clusterDescriptors (
std::vector< pcl::Histogram<FeatureSize> >& histograms,
Eigen::MatrixXi& labels,
Eigen::MatrixXf& clusters_centers)
{
Eigen::MatrixXf points_to_cluster (histograms.size (), FeatureSize);
for (std::size_t i_feature = 0; i_feature < histograms.size (); i_feature++)
for (int i_dim = 0; i_dim < FeatureSize; i_dim++)
points_to_cluster (i_feature, i_dim) = histograms[i_feature].histogram[i_dim];
labels.resize (histograms.size(), 1);
computeKMeansClustering (
points_to_cluster,
number_of_clusters_,
labels,
TermCriteria(TermCriteria::EPS|TermCriteria::COUNT, 10, 0.01f),//1000
5,
PP_CENTERS,
clusters_centers);
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::calculateSigmas (std::vector<float>& sigmas)
{
if (!training_sigmas_.empty ())
{
sigmas.resize (training_sigmas_.size (), 0.0f);
for (std::size_t i_sigma = 0; i_sigma < training_sigmas_.size (); i_sigma++)
sigmas[i_sigma] = training_sigmas_[i_sigma];
return;
}
sigmas.clear ();
unsigned int number_of_classes = *std::max_element (training_classes_.begin (), training_classes_.end () ) + 1;
sigmas.resize (number_of_classes, 0.0f);
std::vector<float> vec;
std::vector<std::vector<float> > objects_sigmas;
objects_sigmas.resize (number_of_classes, vec);
unsigned int number_of_objects = static_cast<unsigned int> (training_clouds_.size ());
for (unsigned int i_object = 0; i_object < number_of_objects; i_object++)
{
float max_distance = 0.0f;
const auto number_of_points = training_clouds_[i_object]->size ();
for (unsigned int i_point = 0; i_point < number_of_points - 1; i_point++)
for (unsigned int j_point = i_point + 1; j_point < number_of_points; j_point++)
{
float curr_distance = 0.0f;
curr_distance += (*training_clouds_[i_object])[i_point].x * (*training_clouds_[i_object])[j_point].x;
curr_distance += (*training_clouds_[i_object])[i_point].y * (*training_clouds_[i_object])[j_point].y;
curr_distance += (*training_clouds_[i_object])[i_point].z * (*training_clouds_[i_object])[j_point].z;
if (curr_distance > max_distance)
max_distance = curr_distance;
}
max_distance = static_cast<float> (sqrt (max_distance));
unsigned int i_class = training_classes_[i_object];
objects_sigmas[i_class].push_back (max_distance);
}
for (unsigned int i_class = 0; i_class < number_of_classes; i_class++)
{
float sig = 0.0f;
unsigned int number_of_objects_in_class = static_cast<unsigned int> (objects_sigmas[i_class].size ());
for (unsigned int i_object = 0; i_object < number_of_objects_in_class; i_object++)
sig += objects_sigmas[i_class][i_object];
sig /= (static_cast<float> (number_of_objects_in_class) * 10.0f);
sigmas[i_class] = sig;
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::calculateWeights (
const std::vector< LocationInfo, Eigen::aligned_allocator<LocationInfo> >& locations,
const Eigen::MatrixXi &labels,
std::vector<float>& sigmas,
std::vector<std::vector<unsigned int> >& clusters,
std::vector<std::vector<float> >& statistical_weights,
std::vector<float>& learned_weights)
{
unsigned int number_of_classes = *std::max_element (training_classes_.begin (), training_classes_.end () ) + 1;
//Temporary variable
std::vector<float> vec;
vec.resize (number_of_clusters_, 0.0f);
statistical_weights.clear ();
learned_weights.clear ();
statistical_weights.resize (number_of_classes, vec);
learned_weights.resize (locations.size (), 0.0f);
//Temporary variable
std::vector<int> vect;
vect.resize (*std::max_element (training_classes_.begin (), training_classes_.end () ) + 1, 0);
//Number of features from which c_i was learned
std::vector<int> n_ftr;
//Total number of votes from visual word v_j
std::vector<int> n_vot;
//Number of visual words that vote for class c_i
std::vector<int> n_vw;
//Number of votes for class c_i from v_j
std::vector<std::vector<int> > n_vot_2;
n_vot_2.resize (number_of_clusters_, vect);
n_vot.resize (number_of_clusters_, 0);
n_ftr.resize (number_of_classes, 0);
for (std::size_t i_location = 0; i_location < locations.size (); i_location++)
{
int i_class = training_classes_[locations[i_location].model_num_];
int i_cluster = labels (i_location);
n_vot_2[i_cluster][i_class] += 1;
n_vot[i_cluster] += 1;
n_ftr[i_class] += 1;
}
n_vw.resize (number_of_classes, 0);
for (unsigned int i_class = 0; i_class < number_of_classes; i_class++)
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
if (n_vot_2[i_cluster][i_class] > 0)
n_vw[i_class] += 1;
//computing learned weights
learned_weights.resize (locations.size (), 0.0);
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
{
unsigned int number_of_words_in_cluster = static_cast<unsigned int> (clusters[i_cluster].size ());
for (unsigned int i_visual_word = 0; i_visual_word < number_of_words_in_cluster; i_visual_word++)
{
unsigned int i_index = clusters[i_cluster][i_visual_word];
int i_class = training_classes_[locations[i_index].model_num_];
float square_sigma_dist = sigmas[i_class] * sigmas[i_class];
if (square_sigma_dist < std::numeric_limits<float>::epsilon ())
{
std::vector<float> calculated_sigmas;
calculateSigmas (calculated_sigmas);
square_sigma_dist = calculated_sigmas[i_class] * calculated_sigmas[i_class];
if (square_sigma_dist < std::numeric_limits<float>::epsilon ())
continue;
}
Eigen::Matrix3f transform = alignYCoordWithNormal (locations[i_index].normal_);
Eigen::Vector3f direction = locations[i_index].dir_to_center_.getVector3fMap ();
applyTransform (direction, transform);
Eigen::Vector3f actual_center = locations[i_index].point_.getVector3fMap () + direction;
//collect gaussian weighted distances
std::vector<float> gauss_dists;
for (unsigned int j_visual_word = 0; j_visual_word < number_of_words_in_cluster; j_visual_word++)
{
unsigned int j_index = clusters[i_cluster][j_visual_word];
int j_class = training_classes_[locations[j_index].model_num_];
if (i_class != j_class)
continue;
//predict center
Eigen::Matrix3f transform_2 = alignYCoordWithNormal (locations[j_index].normal_);
Eigen::Vector3f direction_2 = locations[i_index].dir_to_center_.getVector3fMap ();
applyTransform (direction_2, transform_2);
Eigen::Vector3f predicted_center = locations[j_index].point_.getVector3fMap () + direction_2;
float residual = (predicted_center - actual_center).norm ();
float value = -residual * residual / square_sigma_dist;
gauss_dists.push_back (static_cast<float> (std::exp (value)));
}//next word
//find median gaussian weighted distance
std::size_t mid_elem = (gauss_dists.size () - 1) / 2;
std::nth_element (gauss_dists.begin (), gauss_dists.begin () + mid_elem, gauss_dists.end ());
learned_weights[i_index] = *(gauss_dists.begin () + mid_elem);
}//next word
}//next cluster
//computing statistical weights
for (unsigned int i_cluster = 0; i_cluster < number_of_clusters_; i_cluster++)
{
for (unsigned int i_class = 0; i_class < number_of_classes; i_class++)
{
if (n_vot_2[i_cluster][i_class] == 0)
continue;//no votes per class of interest in this cluster
if (n_vw[i_class] == 0)
continue;//there were no objects of this class in the training dataset
if (n_vot[i_cluster] == 0)
continue;//this cluster has never been used
if (n_ftr[i_class] == 0)
continue;//there were no objects of this class in the training dataset
float part_1 = static_cast<float> (n_vw[i_class]);
float part_2 = static_cast<float> (n_vot[i_cluster]);
float part_3 = static_cast<float> (n_vot_2[i_cluster][i_class]) / static_cast<float> (n_ftr[i_class]);
float part_4 = 0.0f;
if (!n_vot_ON_)
part_2 = 1.0f;
for (unsigned int j_class = 0; j_class < number_of_classes; j_class++)
if (n_ftr[j_class] != 0)
part_4 += static_cast<float> (n_vot_2[i_cluster][j_class]) / static_cast<float> (n_ftr[j_class]);
statistical_weights[i_class][i_cluster] = (1.0f / part_1) * (1.0f / part_2) * part_3 / part_4;
}
}//next cluster
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::simplifyCloud (
typename pcl::PointCloud<PointT>::ConstPtr in_point_cloud,
typename pcl::PointCloud<NormalT>::ConstPtr in_normal_cloud,
typename pcl::PointCloud<PointT>::Ptr out_sampled_point_cloud,
typename pcl::PointCloud<NormalT>::Ptr out_sampled_normal_cloud)
{
//create voxel grid
pcl::VoxelGrid<PointT> grid;
grid.setLeafSize (sampling_size_, sampling_size_, sampling_size_);
grid.setSaveLeafLayout (true);
grid.setInputCloud (in_point_cloud);
pcl::PointCloud<PointT> temp_cloud;
grid.filter (temp_cloud);
//extract indices of points from source cloud which are closest to grid points
const float max_value = std::numeric_limits<float>::max ();
const auto num_source_points = in_point_cloud->size ();
const auto num_sample_points = temp_cloud.size ();
std::vector<float> dist_to_grid_center (num_sample_points, max_value);
std::vector<int> sampling_indices (num_sample_points, -1);
for (std::size_t i_point = 0; i_point < num_source_points; i_point++)
{
int index = grid.getCentroidIndex ((*in_point_cloud)[i_point]);
if (index == -1)
continue;
PointT pt_1 = (*in_point_cloud)[i_point];
PointT pt_2 = temp_cloud[index];
float distance = (pt_1.x - pt_2.x) * (pt_1.x - pt_2.x) + (pt_1.y - pt_2.y) * (pt_1.y - pt_2.y) + (pt_1.z - pt_2.z) * (pt_1.z - pt_2.z);
if (distance < dist_to_grid_center[index])
{
dist_to_grid_center[index] = distance;
sampling_indices[index] = static_cast<int> (i_point);
}
}
//extract source points
pcl::PointIndices::Ptr final_inliers_indices (new pcl::PointIndices ());
pcl::ExtractIndices<PointT> extract_points;
pcl::ExtractIndices<NormalT> extract_normals;
final_inliers_indices->indices.reserve (num_sample_points);
for (std::size_t i_point = 0; i_point < num_sample_points; i_point++)
{
if (sampling_indices[i_point] != -1)
final_inliers_indices->indices.push_back ( sampling_indices[i_point] );
}
extract_points.setInputCloud (in_point_cloud);
extract_points.setIndices (final_inliers_indices);
extract_points.filter (*out_sampled_point_cloud);
extract_normals.setInputCloud (in_normal_cloud);
extract_normals.setIndices (final_inliers_indices);
extract_normals.filter (*out_sampled_normal_cloud);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::shiftCloud (
typename pcl::PointCloud<PointT>::Ptr in_cloud,
Eigen::Vector3f shift_point)
{
for (auto point_it = in_cloud->points.begin (); point_it != in_cloud->points.end (); point_it++)
{
point_it->x -= shift_point.x ();
point_it->y -= shift_point.y ();
point_it->z -= shift_point.z ();
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> Eigen::Matrix3f
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::alignYCoordWithNormal (const NormalT& in_normal)
{
Eigen::Matrix3f result;
Eigen::Matrix3f rotation_matrix_X;
Eigen::Matrix3f rotation_matrix_Z;
float A = 0.0f;
float B = 0.0f;
float sign = -1.0f;
float denom_X = static_cast<float> (sqrt (in_normal.normal_z * in_normal.normal_z + in_normal.normal_y * in_normal.normal_y));
A = in_normal.normal_y / denom_X;
B = sign * in_normal.normal_z / denom_X;
rotation_matrix_X << 1.0f, 0.0f, 0.0f,
0.0f, A, -B,
0.0f, B, A;
float denom_Z = static_cast<float> (sqrt (in_normal.normal_x * in_normal.normal_x + in_normal.normal_y * in_normal.normal_y));
A = in_normal.normal_y / denom_Z;
B = sign * in_normal.normal_x / denom_Z;
rotation_matrix_Z << A, -B, 0.0f,
B, A, 0.0f,
0.0f, 0.0f, 1.0f;
result = rotation_matrix_X * rotation_matrix_Z;
return (result);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::applyTransform (Eigen::Vector3f& io_vec, const Eigen::Matrix3f& in_transform)
{
io_vec = in_transform * io_vec;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::estimateFeatures (
typename pcl::PointCloud<PointT>::Ptr sampled_point_cloud,
typename pcl::PointCloud<NormalT>::Ptr normal_cloud,
typename pcl::PointCloud<pcl::Histogram<FeatureSize> >::Ptr feature_cloud)
{
typename pcl::search::Search<PointT>::Ptr tree (new pcl::search::KdTree<PointT>);
// tree->setInputCloud (point_cloud);
feature_estimator_->setInputCloud (sampled_point_cloud->makeShared ());
// feature_estimator_->setSearchSurface (point_cloud->makeShared ());
feature_estimator_->setSearchMethod (tree);
// typename pcl::SpinImageEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<FeatureSize> >::Ptr feat_est_norm =
// dynamic_pointer_cast<pcl::SpinImageEstimation<pcl::PointXYZ, pcl::Normal, pcl::Histogram<FeatureSize> > > (feature_estimator_);
// feat_est_norm->setInputNormals (normal_cloud);
typename pcl::FeatureFromNormals<pcl::PointXYZ, pcl::Normal, pcl::Histogram<FeatureSize> >::Ptr feat_est_norm =
dynamic_pointer_cast<pcl::FeatureFromNormals<pcl::PointXYZ, pcl::Normal, pcl::Histogram<FeatureSize> > > (feature_estimator_);
feat_est_norm->setInputNormals (normal_cloud);
feature_estimator_->compute (*feature_cloud);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> double
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::computeKMeansClustering (
const Eigen::MatrixXf& points_to_cluster,
int number_of_clusters,
Eigen::MatrixXi& io_labels,
TermCriteria criteria,
int attempts,
int flags,
Eigen::MatrixXf& cluster_centers)
{
const int spp_trials = 3;
std::size_t number_of_points = points_to_cluster.rows () > 1 ? points_to_cluster.rows () : points_to_cluster.cols ();
int feature_dimension = points_to_cluster.rows () > 1 ? FeatureSize : 1;
attempts = std::max (attempts, 1);
srand (static_cast<unsigned int> (time (nullptr)));
Eigen::MatrixXi labels (number_of_points, 1);
if (flags & USE_INITIAL_LABELS)
labels = io_labels;
else
labels.setZero ();
Eigen::MatrixXf centers (number_of_clusters, feature_dimension);
Eigen::MatrixXf old_centers (number_of_clusters, feature_dimension);
std::vector<int> counters (number_of_clusters);
std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> > boxes (feature_dimension);
Eigen::Vector2f* box = &boxes[0];
double best_compactness = std::numeric_limits<double>::max ();
double compactness = 0.0;
if (criteria.type_ & TermCriteria::EPS)
criteria.epsilon_ = std::max (criteria.epsilon_, 0.0f);
else
criteria.epsilon_ = std::numeric_limits<float>::epsilon ();
criteria.epsilon_ *= criteria.epsilon_;
if (criteria.type_ & TermCriteria::COUNT)
criteria.max_count_ = std::min (std::max (criteria.max_count_, 2), 100);
else
criteria.max_count_ = 100;
if (number_of_clusters == 1)
{
attempts = 1;
criteria.max_count_ = 2;
}
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
box[i_dim] = Eigen::Vector2f (points_to_cluster (0, i_dim), points_to_cluster (0, i_dim));
for (std::size_t i_point = 0; i_point < number_of_points; i_point++)
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
{
float v = points_to_cluster (i_point, i_dim);
box[i_dim] (0) = std::min (box[i_dim] (0), v);
box[i_dim] (1) = std::max (box[i_dim] (1), v);
}
for (int i_attempt = 0; i_attempt < attempts; i_attempt++)
{
float max_center_shift = std::numeric_limits<float>::max ();
for (int iter = 0; iter < criteria.max_count_ && max_center_shift > criteria.epsilon_; iter++)
{
Eigen::MatrixXf temp (centers.rows (), centers.cols ());
temp = centers;
centers = old_centers;
old_centers = temp;
if ( iter == 0 && ( i_attempt > 0 || !(flags & USE_INITIAL_LABELS) ) )
{
if (flags & PP_CENTERS)
generateCentersPP (points_to_cluster, centers, number_of_clusters, spp_trials);
else
{
for (int i_cl_center = 0; i_cl_center < number_of_clusters; i_cl_center++)
{
Eigen::VectorXf center (feature_dimension);
generateRandomCenter (boxes, center);
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
centers (i_cl_center, i_dim) = center (i_dim);
}//generate center for next cluster
}//end if-else random or PP centers
}
else
{
centers.setZero ();
for (int i_cluster = 0; i_cluster < number_of_clusters; i_cluster++)
counters[i_cluster] = 0;
for (std::size_t i_point = 0; i_point < number_of_points; i_point++)
{
int i_label = labels (i_point, 0);
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
centers (i_label, i_dim) += points_to_cluster (i_point, i_dim);
counters[i_label]++;
}
if (iter > 0)
max_center_shift = 0.0f;
for (int i_cl_center = 0; i_cl_center < number_of_clusters; i_cl_center++)
{
if (counters[i_cl_center] != 0)
{
float scale = 1.0f / static_cast<float> (counters[i_cl_center]);
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
centers (i_cl_center, i_dim) *= scale;
}
else
{
Eigen::VectorXf center (feature_dimension);
generateRandomCenter (boxes, center);
for(int i_dim = 0; i_dim < feature_dimension; i_dim++)
centers (i_cl_center, i_dim) = center (i_dim);
}
if (iter > 0)
{
float dist = 0.0f;
for (int i_dim = 0; i_dim < feature_dimension; i_dim++)
{
float diff = centers (i_cl_center, i_dim) - old_centers (i_cl_center, i_dim);
dist += diff * diff;
}
max_center_shift = std::max (max_center_shift, dist);
}
}
}
compactness = 0.0f;
for (std::size_t i_point = 0; i_point < number_of_points; i_point++)
{
Eigen::VectorXf sample (feature_dimension);
sample = points_to_cluster.row (i_point);
int k_best = 0;
float min_dist = std::numeric_limits<float>::max ();
for (int i_cluster = 0; i_cluster < number_of_clusters; i_cluster++)
{
Eigen::VectorXf center (feature_dimension);
center = centers.row (i_cluster);
float dist = computeDistance (sample, center);
if (min_dist > dist)
{
min_dist = dist;
k_best = i_cluster;
}
}
compactness += min_dist;
labels (i_point, 0) = k_best;
}
}//next iteration
if (compactness < best_compactness)
{
best_compactness = compactness;
cluster_centers = centers;
io_labels = labels;
}
}//next attempt
return (best_compactness);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::generateCentersPP (
const Eigen::MatrixXf& data,
Eigen::MatrixXf& out_centers,
int number_of_clusters,
int trials)
{
std::size_t dimension = data.cols ();
unsigned int number_of_points = static_cast<unsigned int> (data.rows ());
std::vector<int> centers_vec (number_of_clusters);
int* centers = &centers_vec[0];
std::vector<double> dist (number_of_points);
std::vector<double> tdist (number_of_points);
std::vector<double> tdist2 (number_of_points);
double sum0 = 0.0;
unsigned int random_unsigned = rand ();
centers[0] = random_unsigned % number_of_points;
for (unsigned int i_point = 0; i_point < number_of_points; i_point++)
{
Eigen::VectorXf first (dimension);
Eigen::VectorXf second (dimension);
first = data.row (i_point);
second = data.row (centers[0]);
dist[i_point] = computeDistance (first, second);
sum0 += dist[i_point];
}
for (int i_cluster = 0; i_cluster < number_of_clusters; i_cluster++)
{
double best_sum = std::numeric_limits<double>::max ();
int best_center = -1;
for (int i_trials = 0; i_trials < trials; i_trials++)
{
unsigned int random_integer = rand () - 1;
double random_double = static_cast<double> (random_integer) / static_cast<double> (std::numeric_limits<unsigned int>::max ());
double p = random_double * sum0;
unsigned int i_point;
for (i_point = 0; i_point < number_of_points - 1; i_point++)
if ( (p -= dist[i_point]) <= 0.0)
break;
int ci = i_point;
double s = 0.0;
for (unsigned int i_point = 0; i_point < number_of_points; i_point++)
{
Eigen::VectorXf first (dimension);
Eigen::VectorXf second (dimension);
first = data.row (i_point);
second = data.row (ci);
tdist2[i_point] = std::min (static_cast<double> (computeDistance (first, second)), dist[i_point]);
s += tdist2[i_point];
}
if (s <= best_sum)
{
best_sum = s;
best_center = ci;
std::swap (tdist, tdist2);
}
}
centers[i_cluster] = best_center;
sum0 = best_sum;
std::swap (dist, tdist);
}
for (int i_cluster = 0; i_cluster < number_of_clusters; i_cluster++)
for (std::size_t i_dim = 0; i_dim < dimension; i_dim++)
out_centers (i_cluster, i_dim) = data (centers[i_cluster], i_dim);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> void
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::generateRandomCenter (const std::vector<Eigen::Vector2f, Eigen::aligned_allocator<Eigen::Vector2f> >& boxes,
Eigen::VectorXf& center)
{
std::size_t dimension = boxes.size ();
float margin = 1.0f / static_cast<float> (dimension);
for (std::size_t i_dim = 0; i_dim < dimension; i_dim++)
{
unsigned int random_integer = rand () - 1;
float random_float = static_cast<float> (random_integer) / static_cast<float> (std::numeric_limits<unsigned int>::max ());
center (i_dim) = (random_float * (1.0f + margin * 2.0f)- margin) * (boxes[i_dim] (1) - boxes[i_dim] (0)) + boxes[i_dim] (0);
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <int FeatureSize, typename PointT, typename NormalT> float
pcl::ism::ImplicitShapeModelEstimation<FeatureSize, PointT, NormalT>::computeDistance (Eigen::VectorXf& vec_1, Eigen::VectorXf& vec_2)
{
std::size_t dimension = vec_1.rows () > 1 ? vec_1.rows () : vec_1.cols ();
float distance = 0.0f;
for(std::size_t i_dim = 0; i_dim < dimension; i_dim++)
{
float diff = vec_1 (i_dim) - vec_2 (i_dim);
distance += diff * diff;
}
return (distance);
}
#endif //#ifndef PCL_IMPLICIT_SHAPE_MODEL_HPP_