185 lines
6.4 KiB
C++
185 lines
6.4 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of Willow Garage, Inc. nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <pcl/pcl_macros.h>
|
|
#include <pcl/recognition/hv/hypotheses_verification.h>
|
|
|
|
#include <memory>
|
|
|
|
namespace pcl
|
|
{
|
|
|
|
/**
|
|
* \brief A greedy hypothesis verification method
|
|
* \author Aitor Aldoma
|
|
*/
|
|
|
|
template<typename ModelT, typename SceneT>
|
|
class PCL_EXPORTS GreedyVerification : public HypothesisVerification<ModelT, SceneT>
|
|
{
|
|
using HypothesisVerification<ModelT, SceneT>::mask_;
|
|
using HypothesisVerification<ModelT, SceneT>::scene_cloud_downsampled_;
|
|
using HypothesisVerification<ModelT, SceneT>::scene_downsampled_tree_;
|
|
using HypothesisVerification<ModelT, SceneT>::visible_models_;
|
|
using HypothesisVerification<ModelT, SceneT>::resolution_;
|
|
using HypothesisVerification<ModelT, SceneT>::inliers_threshold_;
|
|
|
|
/*
|
|
* \brief Recognition model using during the verification
|
|
*/
|
|
class RecognitionModel
|
|
{
|
|
public:
|
|
std::vector<int> explained_;
|
|
typename pcl::PointCloud<ModelT>::Ptr cloud_;
|
|
int bad_information_;
|
|
int good_information_;
|
|
int id_;
|
|
float regularizer_;
|
|
};
|
|
|
|
using RecognitionModelPtr = std::shared_ptr<RecognitionModel>;
|
|
|
|
/*
|
|
* \brief Sorts recognition models based on the number of explained scene points and visible outliers
|
|
*/
|
|
struct sortModelsClass
|
|
{
|
|
bool
|
|
operator() (const RecognitionModelPtr & n1, const RecognitionModelPtr & n2)
|
|
{
|
|
float val1 = static_cast<float>(n1->good_information_) - static_cast<float>(n1->bad_information_) * n1->regularizer_;
|
|
float val2 = static_cast<float>(n2->good_information_) - static_cast<float>(n2->bad_information_) * n2->regularizer_;
|
|
return val1 > val2;
|
|
}
|
|
} sortModelsOp;
|
|
|
|
|
|
/*
|
|
* \brief Recognition model indices to keep track of the sorted recognition hypotheses
|
|
*/
|
|
struct modelIndices
|
|
{
|
|
int index_;
|
|
RecognitionModelPtr model_;
|
|
};
|
|
|
|
/*
|
|
* \brief Sorts model indices similar to sortModelsClass
|
|
*/
|
|
struct sortModelIndicesClass
|
|
{
|
|
bool
|
|
operator() (const modelIndices & n1, const modelIndices & n2)
|
|
{
|
|
float val1 = static_cast<float>(n1.model_->good_information_) - static_cast<float>(n1.model_->bad_information_) * n1.model_->regularizer_;
|
|
float val2 = static_cast<float>(n2.model_->good_information_) - static_cast<float>(n2.model_->bad_information_) * n2.model_->regularizer_;
|
|
return val1 > val2;
|
|
}
|
|
} sortModelsIndicesOp;
|
|
|
|
/** \brief Recognition model and indices */
|
|
std::vector<modelIndices> indices_models_;
|
|
|
|
/** \brief Recognition models (hypotheses to be verified) */
|
|
std::vector<RecognitionModelPtr> recognition_models_;
|
|
|
|
/** \brief Recognition models that explain a scene points. */
|
|
std::vector<std::vector<RecognitionModelPtr>> points_explained_by_rm_;
|
|
|
|
/** \brief Weighting for outliers */
|
|
float regularizer_;
|
|
|
|
/** \brief Initialize the data structures */
|
|
void
|
|
initialize ();
|
|
|
|
/** \brief Sorts the hypotheses for the greedy approach */
|
|
void
|
|
sortModels ()
|
|
{
|
|
indices_models_.clear ();
|
|
for (std::size_t i = 0; i < recognition_models_.size (); i++)
|
|
{
|
|
modelIndices mi;
|
|
mi.index_ = static_cast<int> (i);
|
|
mi.model_ = recognition_models_[i];
|
|
indices_models_.push_back (mi);
|
|
}
|
|
|
|
std::sort (indices_models_.begin (), indices_models_.end (), sortModelsIndicesOp);
|
|
//sort also recognition models
|
|
std::sort (recognition_models_.begin (), recognition_models_.end (), sortModelsOp);
|
|
}
|
|
|
|
/** \brief Updates conflicting recognition hypotheses when a hypothesis is accepted */
|
|
void
|
|
updateGoodInformation (int i)
|
|
{
|
|
for (std::size_t k = 0; k < recognition_models_[i]->explained_.size (); k++)
|
|
{
|
|
//update good_information_ for all hypotheses that were explaining the same points as hypothesis i
|
|
for (std::size_t kk = 0; kk < points_explained_by_rm_[recognition_models_[i]->explained_[k]].size (); kk++)
|
|
{
|
|
(points_explained_by_rm_[recognition_models_[i]->explained_[k]])[kk]->good_information_--;
|
|
(points_explained_by_rm_[recognition_models_[i]->explained_[k]])[kk]->bad_information_++;
|
|
}
|
|
}
|
|
}
|
|
|
|
public:
|
|
|
|
/** \brief Constructor
|
|
* \param[in] reg Regularizer value
|
|
**/
|
|
GreedyVerification (float reg = 1.5f) :
|
|
HypothesisVerification<ModelT, SceneT> ()
|
|
{
|
|
regularizer_ = reg;
|
|
}
|
|
|
|
/** \brief Starts verification */
|
|
void
|
|
verify () override;
|
|
};
|
|
}
|
|
|
|
#ifdef PCL_NO_PRECOMPILE
|
|
#include <pcl/recognition/impl/hv/greedy_verification.hpp>
|
|
#endif
|