608 lines
22 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#pragma once
#include <pcl/octree/octree_base.h>
#include <pcl/point_cloud.h>
#include <pcl/point_types.h>
#include <vector>
namespace pcl {
namespace octree {
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief @b Octree pointcloud class
* \note Octree implementation for pointclouds. Only indices are stored by the octree
* leaf nodes (zero-copy).
* \note The octree pointcloud class needs to be initialized with its voxel resolution.
* Its bounding box is automatically adjusted
* \note according to the pointcloud dimension or it can be predefined.
* \note Note: The tree depth equates to the resolution and the bounding box dimensions
* of the octree.
* \tparam PointT: type of point used in pointcloud
* \tparam LeafContainerT: leaf node container
* \tparam BranchContainerT: branch node container
* \tparam OctreeT: octree implementation
* \ingroup octree
* \author Julius Kammerl * (julius@kammerl.de)
*/
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointT,
typename LeafContainerT = OctreeContainerPointIndices,
typename BranchContainerT = OctreeContainerEmpty,
typename OctreeT = OctreeBase<LeafContainerT, BranchContainerT>>
class OctreePointCloud : public OctreeT {
public:
using Base = OctreeT;
using LeafNode = typename OctreeT::LeafNode;
using BranchNode = typename OctreeT::BranchNode;
/** \brief Octree pointcloud constructor.
* \param[in] resolution_arg octree resolution at lowest octree level
*/
OctreePointCloud(const double resolution_arg);
// public typedefs
using IndicesPtr = shared_ptr<Indices>;
using IndicesConstPtr = shared_ptr<const Indices>;
using PointCloud = pcl::PointCloud<PointT>;
using PointCloudPtr = typename PointCloud::Ptr;
using PointCloudConstPtr = typename PointCloud::ConstPtr;
// public typedefs for single/double buffering
using SingleBuffer = OctreePointCloud<PointT,
LeafContainerT,
BranchContainerT,
OctreeBase<LeafContainerT>>;
// using DoubleBuffer = OctreePointCloud<PointT, LeafContainerT, BranchContainerT,
// Octree2BufBase<LeafContainerT> >;
// Boost shared pointers
using Ptr =
shared_ptr<OctreePointCloud<PointT, LeafContainerT, BranchContainerT, OctreeT>>;
using ConstPtr = shared_ptr<
const OctreePointCloud<PointT, LeafContainerT, BranchContainerT, OctreeT>>;
// Eigen aligned allocator
using AlignedPointTVector = std::vector<PointT, Eigen::aligned_allocator<PointT>>;
using AlignedPointXYZVector =
std::vector<PointXYZ, Eigen::aligned_allocator<PointXYZ>>;
/** \brief Provide a pointer to the input data set.
* \param[in] cloud_arg the const boost shared pointer to a PointCloud message
* \param[in] indices_arg the point indices subset that is to be used from \a cloud -
* if 0 the whole point cloud is used
*/
inline void
setInputCloud(const PointCloudConstPtr& cloud_arg,
const IndicesConstPtr& indices_arg = IndicesConstPtr())
{
input_ = cloud_arg;
indices_ = indices_arg;
}
/** \brief Get a pointer to the vector of indices used.
* \return pointer to vector of indices used.
*/
inline IndicesConstPtr const
getIndices() const
{
return (indices_);
}
/** \brief Get a pointer to the input point cloud dataset.
* \return pointer to pointcloud input class.
*/
inline PointCloudConstPtr
getInputCloud() const
{
return (input_);
}
/** \brief Set the search epsilon precision (error bound) for nearest neighbors
* searches.
* \param[in] eps precision (error bound) for nearest neighbors searches
*/
inline void
setEpsilon(double eps)
{
epsilon_ = eps;
}
/** \brief Get the search epsilon precision (error bound) for nearest neighbors
* searches. */
inline double
getEpsilon() const
{
return (epsilon_);
}
/** \brief Set/change the octree voxel resolution
* \param[in] resolution_arg side length of voxels at lowest tree level
*/
inline void
setResolution(double resolution_arg)
{
// octree needs to be empty to change its resolution
assert(this->leaf_count_ == 0);
resolution_ = resolution_arg;
getKeyBitSize();
}
/** \brief Get octree voxel resolution
* \return voxel resolution at lowest tree level
*/
inline double
getResolution() const
{
return (resolution_);
}
/** \brief Get the maximum depth of the octree.
* \return depth_arg: maximum depth of octree
* */
inline uindex_t
getTreeDepth() const
{
return this->octree_depth_;
}
/** \brief Add points from input point cloud to octree. */
void
addPointsFromInputCloud();
/** \brief Add point at given index from input point cloud to octree. Index will be
* also added to indices vector.
* \param[in] point_idx_arg index of point to be added
* \param[in] indices_arg pointer to indices vector of the dataset (given by \a
* setInputCloud)
*/
void
addPointFromCloud(uindex_t point_idx_arg, IndicesPtr indices_arg);
/** \brief Add point simultaneously to octree and input point cloud.
* \param[in] point_arg point to be added
* \param[in] cloud_arg pointer to input point cloud dataset (given by \a
* setInputCloud)
*/
void
addPointToCloud(const PointT& point_arg, PointCloudPtr cloud_arg);
/** \brief Add point simultaneously to octree and input point cloud. A corresponding
* index will be added to the indices vector.
* \param[in] point_arg point to be added
* \param[in] cloud_arg pointer to input point cloud dataset (given by \a
* setInputCloud)
* \param[in] indices_arg pointer to indices vector of the dataset (given by \a
* setInputCloud)
*/
void
addPointToCloud(const PointT& point_arg,
PointCloudPtr cloud_arg,
IndicesPtr indices_arg);
/** \brief Check if voxel at given point exist.
* \param[in] point_arg point to be checked
* \return "true" if voxel exist; "false" otherwise
*/
bool
isVoxelOccupiedAtPoint(const PointT& point_arg) const;
/** \brief Delete the octree structure and its leaf nodes.
* */
void
deleteTree()
{
// reset bounding box
min_x_ = min_y_ = max_y_ = min_z_ = max_z_ = 0;
this->bounding_box_defined_ = false;
OctreeT::deleteTree();
}
/** \brief Check if voxel at given point coordinates exist.
* \param[in] point_x_arg X coordinate of point to be checked
* \param[in] point_y_arg Y coordinate of point to be checked
* \param[in] point_z_arg Z coordinate of point to be checked
* \return "true" if voxel exist; "false" otherwise
*/
bool
isVoxelOccupiedAtPoint(const double point_x_arg,
const double point_y_arg,
const double point_z_arg) const;
/** \brief Check if voxel at given point from input cloud exist.
* \param[in] point_idx_arg point to be checked
* \return "true" if voxel exist; "false" otherwise
*/
bool
isVoxelOccupiedAtPoint(const index_t& point_idx_arg) const;
/** \brief Get a PointT vector of centers of all occupied voxels.
* \param[out] voxel_center_list_arg results are written to this vector of PointT
* elements
* \return number of occupied voxels
*/
uindex_t
getOccupiedVoxelCenters(AlignedPointTVector& voxel_center_list_arg) const;
/** \brief Get a PointT vector of centers of voxels intersected by a line segment.
* This returns a approximation of the actual intersected voxels by walking
* along the line with small steps. Voxels are ordered, from closest to
* furthest w.r.t. the origin.
* \param[in] origin origin of the line segment
* \param[in] end end of the line segment
* \param[out] voxel_center_list results are written to this vector of PointT elements
* \param[in] precision determines the size of the steps: step_size =
* octree_resolution x precision
* \return number of intersected voxels
*/
uindex_t
getApproxIntersectedVoxelCentersBySegment(const Eigen::Vector3f& origin,
const Eigen::Vector3f& end,
AlignedPointTVector& voxel_center_list,
float precision = 0.2);
/** \brief Delete leaf node / voxel at given point
* \param[in] point_arg point addressing the voxel to be deleted.
*/
void
deleteVoxelAtPoint(const PointT& point_arg);
/** \brief Delete leaf node / voxel at given point from input cloud
* \param[in] point_idx_arg index of point addressing the voxel to be deleted.
*/
void
deleteVoxelAtPoint(const index_t& point_idx_arg);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Bounding box methods
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Investigate dimensions of pointcloud data set and define corresponding
* bounding box for octree. */
void
defineBoundingBox();
/** \brief Define bounding box for octree
* \note Bounding box cannot be changed once the octree contains elements.
* \param[in] min_x_arg X coordinate of lower bounding box corner
* \param[in] min_y_arg Y coordinate of lower bounding box corner
* \param[in] min_z_arg Z coordinate of lower bounding box corner
* \param[in] max_x_arg X coordinate of upper bounding box corner
* \param[in] max_y_arg Y coordinate of upper bounding box corner
* \param[in] max_z_arg Z coordinate of upper bounding box corner
*/
void
defineBoundingBox(const double min_x_arg,
const double min_y_arg,
const double min_z_arg,
const double max_x_arg,
const double max_y_arg,
const double max_z_arg);
/** \brief Define bounding box for octree
* \note Lower bounding box point is set to (0, 0, 0)
* \note Bounding box cannot be changed once the octree contains elements.
* \param[in] max_x_arg X coordinate of upper bounding box corner
* \param[in] max_y_arg Y coordinate of upper bounding box corner
* \param[in] max_z_arg Z coordinate of upper bounding box corner
*/
void
defineBoundingBox(const double max_x_arg,
const double max_y_arg,
const double max_z_arg);
/** \brief Define bounding box cube for octree
* \note Lower bounding box corner is set to (0, 0, 0)
* \note Bounding box cannot be changed once the octree contains elements.
* \param[in] cubeLen_arg side length of bounding box cube.
*/
void
defineBoundingBox(const double cubeLen_arg);
/** \brief Get bounding box for octree
* \note Bounding box cannot be changed once the octree contains elements.
* \param[in] min_x_arg X coordinate of lower bounding box corner
* \param[in] min_y_arg Y coordinate of lower bounding box corner
* \param[in] min_z_arg Z coordinate of lower bounding box corner
* \param[in] max_x_arg X coordinate of upper bounding box corner
* \param[in] max_y_arg Y coordinate of upper bounding box corner
* \param[in] max_z_arg Z coordinate of upper bounding box corner
*/
void
getBoundingBox(double& min_x_arg,
double& min_y_arg,
double& min_z_arg,
double& max_x_arg,
double& max_y_arg,
double& max_z_arg) const;
/** \brief Calculates the squared diameter of a voxel at given tree depth
* \param[in] tree_depth_arg depth/level in octree
* \return squared diameter
*/
double
getVoxelSquaredDiameter(uindex_t tree_depth_arg) const;
/** \brief Calculates the squared diameter of a voxel at leaf depth
* \return squared diameter
*/
inline double
getVoxelSquaredDiameter() const
{
return getVoxelSquaredDiameter(this->octree_depth_);
}
/** \brief Calculates the squared voxel cube side length at given tree depth
* \param[in] tree_depth_arg depth/level in octree
* \return squared voxel cube side length
*/
double
getVoxelSquaredSideLen(uindex_t tree_depth_arg) const;
/** \brief Calculates the squared voxel cube side length at leaf level
* \return squared voxel cube side length
*/
inline double
getVoxelSquaredSideLen() const
{
return getVoxelSquaredSideLen(this->octree_depth_);
}
/** \brief Generate bounds of the current voxel of an octree iterator
* \param[in] iterator: octree iterator
* \param[out] min_pt lower bound of voxel
* \param[out] max_pt upper bound of voxel
*/
inline void
getVoxelBounds(const OctreeIteratorBase<OctreeT>& iterator,
Eigen::Vector3f& min_pt,
Eigen::Vector3f& max_pt) const
{
this->genVoxelBoundsFromOctreeKey(iterator.getCurrentOctreeKey(),
iterator.getCurrentOctreeDepth(),
min_pt,
max_pt);
}
/** \brief Enable dynamic octree structure
* \note Leaf nodes are kept as close to the root as possible and are only expanded
* if the number of DataT objects within a leaf node exceeds a fixed limit.
* \param maxObjsPerLeaf: maximum number of DataT objects per leaf
* */
inline void
enableDynamicDepth(std::size_t maxObjsPerLeaf)
{
assert(this->leaf_count_ == 0);
max_objs_per_leaf_ = maxObjsPerLeaf;
this->dynamic_depth_enabled_ = max_objs_per_leaf_ > 0;
}
protected:
/** \brief Add point at index from input pointcloud dataset to octree
* \param[in] point_idx_arg the index representing the point in the dataset given by
* \a setInputCloud to be added
*/
virtual void
addPointIdx(uindex_t point_idx_arg);
/** \brief Add point at index from input pointcloud dataset to octree
* \param[in] leaf_node to be expanded
* \param[in] parent_branch parent of leaf node to be expanded
* \param[in] child_idx child index of leaf node (in parent branch)
* \param[in] depth_mask of leaf node to be expanded
*/
void
expandLeafNode(LeafNode* leaf_node,
BranchNode* parent_branch,
unsigned char child_idx,
uindex_t depth_mask);
/** \brief Get point at index from input pointcloud dataset
* \param[in] index_arg index representing the point in the dataset given by \a
* setInputCloud
* \return PointT from input pointcloud dataset
*/
const PointT&
getPointByIndex(uindex_t index_arg) const;
/** \brief Find octree leaf node at a given point
* \param[in] point_arg query point
* \return pointer to leaf node. If leaf node does not exist, pointer is 0.
*/
LeafContainerT*
findLeafAtPoint(const PointT& point_arg) const
{
OctreeKey key;
// generate key for point
this->genOctreeKeyforPoint(point_arg, key);
return (this->findLeaf(key));
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Protected octree methods based on octree keys
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Define octree key setting and octree depth based on defined bounding box.
*/
void
getKeyBitSize();
/** \brief Grow the bounding box/octree until point fits
* \param[in] point_idx_arg point that should be within bounding box;
*/
void
adoptBoundingBoxToPoint(const PointT& point_idx_arg);
/** \brief Checks if given point is within the bounding box of the octree
* \param[in] point_idx_arg point to be checked for bounding box violations
* \return "true" - no bound violation
*/
inline bool
isPointWithinBoundingBox(const PointT& point_idx_arg) const
{
return (!((point_idx_arg.x < min_x_) || (point_idx_arg.y < min_y_) ||
(point_idx_arg.z < min_z_) || (point_idx_arg.x >= max_x_) ||
(point_idx_arg.y >= max_y_) || (point_idx_arg.z >= max_z_)));
}
/** \brief Generate octree key for voxel at a given point
* \param[in] point_arg the point addressing a voxel
* \param[out] key_arg write octree key to this reference
*/
void
genOctreeKeyforPoint(const PointT& point_arg, OctreeKey& key_arg) const;
/** \brief Generate octree key for voxel at a given point
* \param[in] point_x_arg X coordinate of point addressing a voxel
* \param[in] point_y_arg Y coordinate of point addressing a voxel
* \param[in] point_z_arg Z coordinate of point addressing a voxel
* \param[out] key_arg write octree key to this reference
*/
void
genOctreeKeyforPoint(const double point_x_arg,
const double point_y_arg,
const double point_z_arg,
OctreeKey& key_arg) const;
/** \brief Virtual method for generating octree key for a given point index.
* \note This method enables to assign indices to leaf nodes during octree
* deserialization.
* \param[in] data_arg index value representing a point in the dataset given by \a
* setInputCloud
* \param[out] key_arg write octree key to this reference \return "true" - octree keys
* are assignable
*/
virtual bool
genOctreeKeyForDataT(const index_t& data_arg, OctreeKey& key_arg) const;
/** \brief Generate a point at center of leaf node voxel
* \param[in] key_arg octree key addressing a leaf node.
* \param[out] point_arg write leaf node voxel center to this point reference
*/
void
genLeafNodeCenterFromOctreeKey(const OctreeKey& key_arg, PointT& point_arg) const;
/** \brief Generate a point at center of octree voxel at given tree level
* \param[in] key_arg octree key addressing an octree node.
* \param[in] tree_depth_arg octree depth of query voxel
* \param[out] point_arg write leaf node center point to this reference
*/
void
genVoxelCenterFromOctreeKey(const OctreeKey& key_arg,
uindex_t tree_depth_arg,
PointT& point_arg) const;
/** \brief Generate bounds of an octree voxel using octree key and tree depth
* arguments
* \param[in] key_arg octree key addressing an octree node.
* \param[in] tree_depth_arg octree depth of query voxel
* \param[out] min_pt lower bound of voxel
* \param[out] max_pt upper bound of voxel
*/
void
genVoxelBoundsFromOctreeKey(const OctreeKey& key_arg,
uindex_t tree_depth_arg,
Eigen::Vector3f& min_pt,
Eigen::Vector3f& max_pt) const;
/** \brief Recursively search the tree for all leaf nodes and return a vector of voxel
* centers.
* \param[in] node_arg current octree node to be explored
* \param[in] key_arg octree key addressing a leaf node.
* \param[out] voxel_center_list_arg results are written to this vector of PointT
* elements
* \return number of voxels found
*/
uindex_t
getOccupiedVoxelCentersRecursive(const BranchNode* node_arg,
const OctreeKey& key_arg,
AlignedPointTVector& voxel_center_list_arg) const;
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Globals
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Pointer to input point cloud dataset. */
PointCloudConstPtr input_;
/** \brief A pointer to the vector of point indices to use. */
IndicesConstPtr indices_;
/** \brief Epsilon precision (error bound) for nearest neighbors searches. */
double epsilon_;
/** \brief Octree resolution. */
double resolution_;
// Octree bounding box coordinates
double min_x_;
double max_x_;
double min_y_;
double max_y_;
double min_z_;
double max_z_;
/** \brief Flag indicating if octree has defined bounding box. */
bool bounding_box_defined_;
/** \brief Amount of DataT objects per leafNode before expanding branch
* \note zero indicates a fixed/maximum depth octree structure
* **/
std::size_t max_objs_per_leaf_;
};
} // namespace octree
} // namespace pcl
#ifdef PCL_NO_PRECOMPILE
#include <pcl/octree/impl/octree_pointcloud.hpp>
#endif