690 lines
23 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#pragma once
#include <pcl/octree/octree_container.h>
#include <pcl/octree/octree_iterator.h>
#include <pcl/octree/octree_key.h>
#include <pcl/octree/octree_nodes.h>
#include <pcl/pcl_macros.h>
#include <vector>
namespace pcl {
namespace octree {
/** \brief Octree class
* \note The tree depth defines the maximum amount of octree voxels / leaf nodes (should
* be initially defined).
* \note All leaf nodes are addressed by integer indices.
* \note The tree depth equates to the bit length of the voxel indices.
* \ingroup octree
* \author Julius Kammerl (julius@kammerl.de)
*/
template <typename LeafContainerT = index_t,
typename BranchContainerT = OctreeContainerEmpty>
class OctreeBase {
public:
using OctreeT = OctreeBase<LeafContainerT, BranchContainerT>;
using BranchNode = OctreeBranchNode<BranchContainerT>;
using LeafNode = OctreeLeafNode<LeafContainerT>;
using BranchContainer = BranchContainerT;
using LeafContainer = LeafContainerT;
protected:
///////////////////////////////////////////////////////////////////////
// Members
///////////////////////////////////////////////////////////////////////
/** \brief Amount of leaf nodes **/
std::size_t leaf_count_;
/** \brief Amount of branch nodes **/
std::size_t branch_count_;
/** \brief Pointer to root branch node of octree **/
BranchNode* root_node_;
/** \brief Depth mask based on octree depth **/
uindex_t depth_mask_;
/** \brief Octree depth */
uindex_t octree_depth_;
/** \brief Enable dynamic_depth **/
bool dynamic_depth_enabled_;
/** \brief key range */
OctreeKey max_key_;
public:
// iterators are friends
friend class OctreeIteratorBase<OctreeT>;
friend class OctreeDepthFirstIterator<OctreeT>;
friend class OctreeBreadthFirstIterator<OctreeT>;
friend class OctreeFixedDepthIterator<OctreeT>;
friend class OctreeLeafNodeDepthFirstIterator<OctreeT>;
friend class OctreeLeafNodeBreadthFirstIterator<OctreeT>;
// Octree default iterators
using Iterator = OctreeDepthFirstIterator<OctreeT>;
using ConstIterator = const OctreeDepthFirstIterator<OctreeT>;
Iterator
begin(uindex_t max_depth_arg = 0u)
{
return Iterator(this, max_depth_arg ? max_depth_arg : this->octree_depth_);
};
const Iterator
end()
{
return Iterator(this, 0, nullptr);
};
// Octree leaf node iterators
// The previous deprecated names
// LeafNodeIterator and ConstLeafNodeIterator are deprecated.
// Please use LeafNodeDepthFirstIterator and ConstLeafNodeDepthFirstIterator instead.
using LeafNodeIterator = OctreeLeafNodeDepthFirstIterator<OctreeT>;
using ConstLeafNodeIterator = const OctreeLeafNodeDepthFirstIterator<OctreeT>;
// The currently valide names
using LeafNodeDepthFirstIterator = OctreeLeafNodeDepthFirstIterator<OctreeT>;
using ConstLeafNodeDepthFirstIterator =
const OctreeLeafNodeDepthFirstIterator<OctreeT>;
LeafNodeDepthFirstIterator
leaf_depth_begin(uindex_t max_depth_arg = 0u)
{
return LeafNodeDepthFirstIterator(
this, max_depth_arg ? max_depth_arg : this->octree_depth_);
};
const LeafNodeDepthFirstIterator
leaf_depth_end()
{
return LeafNodeDepthFirstIterator(this, 0, nullptr);
};
// Octree depth-first iterators
using DepthFirstIterator = OctreeDepthFirstIterator<OctreeT>;
using ConstDepthFirstIterator = const OctreeDepthFirstIterator<OctreeT>;
DepthFirstIterator
depth_begin(uindex_t max_depth_arg = 0u)
{
return DepthFirstIterator(this,
max_depth_arg ? max_depth_arg : this->octree_depth_);
};
const DepthFirstIterator
depth_end()
{
return DepthFirstIterator(this, 0, nullptr);
};
// Octree breadth-first iterators
using BreadthFirstIterator = OctreeBreadthFirstIterator<OctreeT>;
using ConstBreadthFirstIterator = const OctreeBreadthFirstIterator<OctreeT>;
BreadthFirstIterator
breadth_begin(uindex_t max_depth_arg = 0u)
{
return BreadthFirstIterator(this,
max_depth_arg ? max_depth_arg : this->octree_depth_);
};
const BreadthFirstIterator
breadth_end()
{
return BreadthFirstIterator(this, 0, nullptr);
};
// Octree breadth iterators at a given depth
using FixedDepthIterator = OctreeFixedDepthIterator<OctreeT>;
using ConstFixedDepthIterator = const OctreeFixedDepthIterator<OctreeT>;
FixedDepthIterator
fixed_depth_begin(uindex_t fixed_depth_arg = 0u)
{
return FixedDepthIterator(this, fixed_depth_arg);
};
const FixedDepthIterator
fixed_depth_end()
{
return FixedDepthIterator(this, 0, nullptr);
};
// Octree leaf node iterators
using LeafNodeBreadthFirstIterator = OctreeLeafNodeBreadthFirstIterator<OctreeT>;
using ConstLeafNodeBreadthFirstIterator =
const OctreeLeafNodeBreadthFirstIterator<OctreeT>;
LeafNodeBreadthFirstIterator
leaf_breadth_begin(uindex_t max_depth_arg = 0u)
{
return LeafNodeBreadthFirstIterator(
this, max_depth_arg ? max_depth_arg : this->octree_depth_);
};
const LeafNodeBreadthFirstIterator
leaf_breadth_end()
{
return LeafNodeBreadthFirstIterator(this, 0, nullptr);
};
/** \brief Empty constructor. */
OctreeBase();
/** \brief Empty deconstructor. */
virtual ~OctreeBase();
/** \brief Copy constructor. */
OctreeBase(const OctreeBase& source)
: leaf_count_(source.leaf_count_)
, branch_count_(source.branch_count_)
, root_node_(new (BranchNode)(*(source.root_node_)))
, depth_mask_(source.depth_mask_)
, octree_depth_(source.octree_depth_)
, dynamic_depth_enabled_(source.dynamic_depth_enabled_)
, max_key_(source.max_key_)
{}
/** \brief Copy operator. */
OctreeBase&
operator=(const OctreeBase& source)
{
leaf_count_ = source.leaf_count_;
branch_count_ = source.branch_count_;
delete root_node_;
root_node_ = new (BranchNode)(*(source.root_node_));
depth_mask_ = source.depth_mask_;
max_key_ = source.max_key_;
octree_depth_ = source.octree_depth_;
return (*this);
}
/** \brief Set the maximum amount of voxels per dimension.
* \param[in] max_voxel_index_arg maximum amount of voxels per dimension
*/
void
setMaxVoxelIndex(uindex_t max_voxel_index_arg);
/** \brief Set the maximum depth of the octree.
* \param max_depth_arg: maximum depth of octree
*/
void
setTreeDepth(uindex_t max_depth_arg);
/** \brief Get the maximum depth of the octree.
* \return depth_arg: maximum depth of octree
*/
uindex_t
getTreeDepth() const
{
return this->octree_depth_;
}
/** \brief Create new leaf node at (idx_x_arg, idx_y_arg, idx_z_arg).
* \note If leaf node already exist, this method returns the existing node
* \param idx_x_arg: index of leaf node in the X axis.
* \param idx_y_arg: index of leaf node in the Y axis.
* \param idx_z_arg: index of leaf node in the Z axis.
* \return pointer to new leaf node container.
*/
LeafContainerT*
createLeaf(uindex_t idx_x_arg, uindex_t idx_y_arg, uindex_t idx_z_arg);
/** \brief Find leaf node at (idx_x_arg, idx_y_arg, idx_z_arg).
* \note If leaf node already exist, this method returns the existing node
* \param idx_x_arg: index of leaf node in the X axis.
* \param idx_y_arg: index of leaf node in the Y axis.
* \param idx_z_arg: index of leaf node in the Z axis.
* \return pointer to leaf node container if found, null pointer otherwise.
*/
LeafContainerT*
findLeaf(uindex_t idx_x_arg, uindex_t idx_y_arg, uindex_t idx_z_arg);
/** \brief idx_x_arg for the existence of leaf node at (idx_x_arg, idx_y_arg,
* idx_z_arg).
* \param idx_x_arg: index of leaf node in the X axis.
* \param idx_y_arg: index of leaf node in the Y axis.
* \param idx_z_arg: index of leaf node in the Z axis.
* \return "true" if leaf node search is successful, otherwise it returns "false".
*/
bool
existLeaf(uindex_t idx_x_arg, uindex_t idx_y_arg, uindex_t idx_z_arg) const;
/** \brief Remove leaf node at (idx_x_arg, idx_y_arg, idx_z_arg).
* \param idx_x_arg: index of leaf node in the X axis.
* \param idx_y_arg: index of leaf node in the Y axis.
* \param idx_z_arg: index of leaf node in the Z axis.
*/
void
removeLeaf(uindex_t idx_x_arg, uindex_t idx_y_arg, uindex_t idx_z_arg);
/** \brief Return the amount of existing leafs in the octree.
* \return amount of registered leaf nodes.
*/
std::size_t
getLeafCount() const
{
return leaf_count_;
}
/** \brief Return the amount of existing branch nodes in the octree.
* \return amount of branch nodes.
*/
std::size_t
getBranchCount() const
{
return branch_count_;
}
/** \brief Delete the octree structure and its leaf nodes.
*/
void
deleteTree();
/** \brief Serialize octree into a binary output vector describing its branch node
* structure.
* \param binary_tree_out_arg: reference to output vector for writing binary tree
* structure.
*/
void
serializeTree(std::vector<char>& binary_tree_out_arg);
/** \brief Serialize octree into a binary output vector describing its branch node
* structure and push all LeafContainerT elements stored in the octree to a vector.
* \param binary_tree_out_arg: reference to output vector for writing binary tree
* structure.
* \param leaf_container_vector_arg: pointer to all LeafContainerT objects in the
* octree
*/
void
serializeTree(std::vector<char>& binary_tree_out_arg,
std::vector<LeafContainerT*>& leaf_container_vector_arg);
/** \brief Outputs a vector of all LeafContainerT elements that are stored within the
* octree leaf nodes.
* \param leaf_container_vector_arg: pointers to LeafContainerT vector that receives a
* copy of all LeafContainerT objects in the octree.
*/
void
serializeLeafs(std::vector<LeafContainerT*>& leaf_container_vector_arg);
/** \brief Deserialize a binary octree description vector and create a corresponding
* octree structure. Leaf nodes are initialized with getDataTByKey(..).
* \param binary_tree_input_arg: reference to input vector for reading binary tree
* structure.
*/
void
deserializeTree(std::vector<char>& binary_tree_input_arg);
/** \brief Deserialize a binary octree description and create a corresponding octree
* structure. Leaf nodes are initialized with LeafContainerT elements from the
* dataVector.
* \param binary_tree_input_arg: reference to input vector for reading binary tree
* structure. \param leaf_container_vector_arg: pointer to container vector.
*/
void
deserializeTree(std::vector<char>& binary_tree_input_arg,
std::vector<LeafContainerT*>& leaf_container_vector_arg);
protected:
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Protected octree methods based on octree keys
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Create a leaf node
* \param key_arg: octree key addressing a leaf node.
* \return pointer to leaf node
*/
LeafContainerT*
createLeaf(const OctreeKey& key_arg)
{
LeafNode* leaf_node = nullptr;
BranchNode* leaf_node_parent;
createLeafRecursive(key_arg, depth_mask_, root_node_, leaf_node, leaf_node_parent);
LeafContainerT* ret = leaf_node->getContainerPtr();
return ret;
}
/** \brief Find leaf node
* \param key_arg: octree key addressing a leaf node.
* \return pointer to leaf node. If leaf node is not found, this pointer returns 0.
*/
LeafContainerT*
findLeaf(const OctreeKey& key_arg) const
{
LeafContainerT* result = nullptr;
findLeafRecursive(key_arg, depth_mask_, root_node_, result);
return result;
}
/** \brief Check for existence of a leaf node in the octree
* \param key_arg: octree key addressing a leaf node.
* \return "true" if leaf node is found; "false" otherwise
*/
bool
existLeaf(const OctreeKey& key_arg) const
{
return (findLeaf(key_arg) != nullptr);
}
/** \brief Remove leaf node from octree
* \param key_arg: octree key addressing a leaf node.
*/
void
removeLeaf(const OctreeKey& key_arg)
{
if (key_arg <= max_key_)
deleteLeafRecursive(key_arg, depth_mask_, root_node_);
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Branch node access functions
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Retrieve root node */
OctreeNode*
getRootNode() const
{
return this->root_node_;
}
/** \brief Check if branch is pointing to a particular child node
* \param branch_arg: reference to octree branch class
* \param child_idx_arg: index to child node
* \return "true" if pointer to child node exists; "false" otherwise
*/
bool
branchHasChild(const BranchNode& branch_arg, unsigned char child_idx_arg) const
{
// test occupancyByte for child existence
return (branch_arg.getChildPtr(child_idx_arg) != nullptr);
}
/** \brief Retrieve a child node pointer for child node at child_idx.
* \param branch_arg: reference to octree branch class
* \param child_idx_arg: index to child node
* \return pointer to octree child node class
*/
OctreeNode*
getBranchChildPtr(const BranchNode& branch_arg, unsigned char child_idx_arg) const
{
return branch_arg.getChildPtr(child_idx_arg);
}
/** \brief Assign new child node to branch
* \param branch_arg: reference to octree branch class
* \param child_idx_arg: index to child node
* \param new_child_arg: pointer to new child node
*/
void
setBranchChildPtr(BranchNode& branch_arg,
unsigned char child_idx_arg,
OctreeNode* new_child_arg)
{
branch_arg[child_idx_arg] = new_child_arg;
}
/** \brief Generate bit pattern reflecting the existence of child node pointers
* \param branch_arg: reference to octree branch class
* \return a single byte with 8 bits of child node information
*/
char
getBranchBitPattern(const BranchNode& branch_arg) const
{
char node_bits;
// create bit pattern
node_bits = 0;
for (unsigned char i = 0; i < 8; i++) {
const OctreeNode* child = branch_arg.getChildPtr(i);
node_bits |= static_cast<char>((!!child) << i);
}
return (node_bits);
}
/** \brief Delete child node and all its subchilds from octree
* \param branch_arg: reference to octree branch class
* \param child_idx_arg: index to child node
*/
void
deleteBranchChild(BranchNode& branch_arg, unsigned char child_idx_arg)
{
if (branch_arg.hasChild(child_idx_arg)) {
OctreeNode* branch_child = branch_arg[child_idx_arg];
switch (branch_child->getNodeType()) {
case BRANCH_NODE: {
// free child branch recursively
deleteBranch(*static_cast<BranchNode*>(branch_child));
// delete branch node
delete branch_child;
} break;
case LEAF_NODE: {
// delete leaf node
delete branch_child;
break;
}
default:
break;
}
// set branch child pointer to 0
branch_arg[child_idx_arg] = nullptr;
}
}
/** \brief Delete branch and all its subchilds from octree
* \param branch_arg: reference to octree branch class
*/
void
deleteBranch(BranchNode& branch_arg)
{
// delete all branch node children
for (char i = 0; i < 8; i++)
deleteBranchChild(branch_arg, i);
}
/** \brief Create and add a new branch child to a branch class
* \param branch_arg: reference to octree branch class
* \param child_idx_arg: index to child node
* \return pointer of new branch child to this reference
*/
BranchNode*
createBranchChild(BranchNode& branch_arg, unsigned char child_idx_arg)
{
BranchNode* new_branch_child = new BranchNode();
branch_arg[child_idx_arg] = static_cast<OctreeNode*>(new_branch_child);
return new_branch_child;
}
/** \brief Create and add a new leaf child to a branch class
* \param branch_arg: reference to octree branch class
* \param child_idx_arg: index to child node
* \return pointer of new leaf child to this reference
*/
LeafNode*
createLeafChild(BranchNode& branch_arg, unsigned char child_idx_arg)
{
LeafNode* new_leaf_child = new LeafNode();
branch_arg[child_idx_arg] = static_cast<OctreeNode*>(new_leaf_child);
return new_leaf_child;
}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Recursive octree methods
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Create a leaf node at octree key. If leaf node does already exist, it is
* returned.
* \param key_arg: reference to an octree key
* \param depth_mask_arg: depth mask used for octree key analysis and for branch depth
* indicator
* \param branch_arg: current branch node
* \param return_leaf_arg: return pointer to leaf node
* \param parent_of_leaf_arg: return pointer to parent of leaf node
* \return depth mask at which leaf node was created
**/
uindex_t
createLeafRecursive(const OctreeKey& key_arg,
uindex_t depth_mask_arg,
BranchNode* branch_arg,
LeafNode*& return_leaf_arg,
BranchNode*& parent_of_leaf_arg);
/** \brief Recursively search for a given leaf node and return a pointer.
* \note If leaf node does not exist, a 0 pointer is returned.
* \param key_arg: reference to an octree key
* \param depth_mask_arg: depth mask used for octree key analysis and for branch
* depth indicator
* \param branch_arg: current branch node
* \param result_arg: pointer to leaf node class
**/
void
findLeafRecursive(const OctreeKey& key_arg,
uindex_t depth_mask_arg,
BranchNode* branch_arg,
LeafContainerT*& result_arg) const;
/** \brief Recursively search and delete leaf node
* \param key_arg: reference to an octree key
* \param depth_mask_arg: depth mask used for octree key analysis and branch depth
* indicator
* \param branch_arg: current branch node
* \return "true" if branch does not contain any childs; "false" otherwise. This
* indicates if current branch can be deleted, too.
**/
bool
deleteLeafRecursive(const OctreeKey& key_arg,
uindex_t depth_mask_arg,
BranchNode* branch_arg);
/** \brief Recursively explore the octree and output binary octree description
* together with a vector of leaf node LeafContainerTs.
* \param branch_arg: current branch node
* \param key_arg: reference to an octree key
* \param binary_tree_out_arg: binary output vector
* \param leaf_container_vector_arg: writes LeafContainerT pointers to this
*LeafContainerT* vector.
**/
void
serializeTreeRecursive(
const BranchNode* branch_arg,
OctreeKey& key_arg,
std::vector<char>* binary_tree_out_arg,
typename std::vector<LeafContainerT*>* leaf_container_vector_arg) const;
/** \brief Recursive method for deserializing octree structure
* \param branch_arg: current branch node
* \param depth_mask_arg: depth mask used for octree key analysis and branch depth
* indicator
* \param key_arg: reference to an octree key
* \param binary_tree_input_it_arg: iterator to binary input vector
* \param binary_tree_input_it_end_arg: end iterator of binary input vector
* \param leaf_container_vector_it_arg: iterator pointing to current LeafContainerT
* object to be added to a leaf node
* \param leaf_container_vector_it_end_arg: iterator pointing to last object in
* LeafContainerT input vector.
**/
void
deserializeTreeRecursive(
BranchNode* branch_arg,
uindex_t depth_mask_arg,
OctreeKey& key_arg,
typename std::vector<char>::const_iterator& binary_tree_input_it_arg,
typename std::vector<char>::const_iterator& binary_tree_input_it_end_arg,
typename std::vector<LeafContainerT*>::const_iterator*
leaf_container_vector_it_arg,
typename std::vector<LeafContainerT*>::const_iterator*
leaf_container_vector_it_end_arg);
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Serialization callbacks
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Callback executed for every leaf node during serialization
**/
virtual void
serializeTreeCallback(LeafContainerT&, const OctreeKey&) const
{}
/** \brief Callback executed for every leaf node during deserialization
**/
virtual void
deserializeTreeCallback(LeafContainerT&, const OctreeKey&)
{}
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Helpers
//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
/** \brief Test if octree is able to dynamically change its depth. This is required
*for adaptive bounding box adjustment.
* \return "true"
**/
bool
octreeCanResize()
{
return (true);
}
};
} // namespace octree
} // namespace pcl
#ifdef PCL_NO_PRECOMPILE
#include <pcl/octree/impl/octree_base.hpp>
#endif