185 lines
5.2 KiB
C
185 lines
5.2 KiB
C
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
|
* Copyright (c) 2010-2012, Willow Garage, Inc.
|
|
* Copyright (c) 2000-2012 Chih-Chung Chang and Chih-Jen Lin
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#define LIBSVM_VERSION 311
|
|
|
|
#ifdef __cplusplus
|
|
extern "C" {
|
|
#endif
|
|
|
|
extern int libsvm_version;
|
|
|
|
struct svm_node {
|
|
int index;
|
|
double value;
|
|
};
|
|
|
|
struct svm_problem {
|
|
int l;
|
|
double* y;
|
|
|
|
struct svm_node** x;
|
|
};
|
|
|
|
struct svm_scaling {
|
|
// index = 1 if usable, index = 0 if not
|
|
|
|
struct svm_node* obj;
|
|
|
|
// max features scaled
|
|
int max;
|
|
|
|
svm_scaling() : max(0) {}
|
|
};
|
|
|
|
enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR }; /* svm_type */
|
|
enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
|
|
|
|
struct svm_parameter {
|
|
int svm_type;
|
|
int kernel_type;
|
|
int degree; /* for poly */
|
|
double gamma; /* for poly/rbf/sigmoid */
|
|
double coef0; /* for poly/sigmoid */
|
|
|
|
/* these are for training only */
|
|
double cache_size; /* in MB */
|
|
double eps; /* stopping criteria */
|
|
double C; /* for C_SVC, EPSILON_SVR and NU_SVR */
|
|
int nr_weight; /* for C_SVC */
|
|
int* weight_label; /* for C_SVC */
|
|
double* weight; /* for C_SVC */
|
|
double nu; /* for NU_SVC, ONE_CLASS, and NU_SVR */
|
|
double p; /* for EPSILON_SVR */
|
|
int shrinking; /* use the shrinking heuristics */
|
|
int probability; /* do probability estimates */
|
|
};
|
|
|
|
//
|
|
// svm_model
|
|
//
|
|
|
|
struct svm_model {
|
|
|
|
struct svm_parameter param; /* parameter */
|
|
int nr_class; /* number of classes, = 2 in regression/one class svm */
|
|
int l; /* total #SV */
|
|
|
|
struct svm_node** SV; /* SVs (SV[l]) */
|
|
double** sv_coef; /* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
|
|
double* rho; /* constants in decision functions (rho[k*(k-1)/2]) */
|
|
double* probA; /* pariwise probability information */
|
|
double* probB;
|
|
|
|
/* for classification only */
|
|
|
|
int* label; /* label of each class (label[k]) */
|
|
int* nSV; /* number of SVs for each class (nSV[k]) */
|
|
/* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
|
|
/* XXX */
|
|
int free_sv; /* 1 if svm_model is created by svm_load_model*/
|
|
/* 0 if svm_model is created by svm_train */
|
|
|
|
/* for scaling */
|
|
|
|
struct svm_node* scaling;
|
|
};
|
|
|
|
struct svm_model*
|
|
svm_train(const struct svm_problem* prob, const struct svm_parameter* param);
|
|
void
|
|
svm_cross_validation(const struct svm_problem* prob,
|
|
const struct svm_parameter* param,
|
|
int nr_fold,
|
|
double* target);
|
|
|
|
int
|
|
svm_save_model(const char* model_file_name, const struct svm_model* model);
|
|
|
|
struct svm_model*
|
|
svm_load_model(const char* model_file_name);
|
|
|
|
int
|
|
svm_get_svm_type(const struct svm_model* model);
|
|
|
|
int
|
|
svm_get_nr_class(const struct svm_model* model);
|
|
|
|
void
|
|
svm_get_labels(const struct svm_model* model, int* label);
|
|
|
|
double
|
|
svm_get_svr_probability(const struct svm_model* model);
|
|
|
|
double
|
|
svm_predict_values(const struct svm_model* model,
|
|
const struct svm_node* x,
|
|
double* dec_values);
|
|
double
|
|
svm_predict(const struct svm_model* model, const struct svm_node* x);
|
|
|
|
double
|
|
svm_predict_probability(const struct svm_model* model,
|
|
const struct svm_node* x,
|
|
double* prob_estimates);
|
|
|
|
void
|
|
svm_free_model_content(struct svm_model* model_ptr);
|
|
|
|
void
|
|
svm_free_and_destroy_model(struct svm_model** model_ptr_ptr);
|
|
|
|
void
|
|
svm_destroy_param(struct svm_parameter* param);
|
|
|
|
const char*
|
|
svm_check_parameter(const struct svm_problem* prob, const struct svm_parameter* param);
|
|
|
|
int
|
|
svm_check_probability_model(const struct svm_model* model);
|
|
|
|
void
|
|
svm_set_print_string_function(void (*print_func)(const char*));
|
|
|
|
#ifdef __cplusplus
|
|
}
|
|
|
|
#endif
|