165 lines
4.7 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Willow Garage, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* Author : Christian Potthast
* Email : potthast@usc.edu
*
*/
#pragma once
#include <pcl/ml/pairwise_potential.h>
#include <pcl/memory.h>
#include <pcl/pcl_macros.h>
namespace pcl {
class PCL_EXPORTS DenseCrf {
public:
/** Constructor for DenseCrf class. */
DenseCrf(int N, int m);
/** Deconstructor for DenseCrf class. */
~DenseCrf();
/** Set the input data vector.
*
* The input data vector holds the measurements coordinates as ijk of the voxel grid.
*/
void
setDataVector(const std::vector<Eigen::Vector3i,
Eigen::aligned_allocator<Eigen::Vector3i>> data);
/** The associated color of the data. */
void
setColorVector(const std::vector<Eigen::Vector3i,
Eigen::aligned_allocator<Eigen::Vector3i>> color);
void
setUnaryEnergy(const std::vector<float> unary);
void
addPairwiseEnergy(const std::vector<float>& feature,
const int feature_dimension,
const float w);
/** Add a pairwise gaussian kernel. */
void
addPairwiseGaussian(float sx, float sy, float sz, float w);
/** Add a bilateral gaussian kernel. */
void
addPairwiseBilateral(
float sx, float sy, float sz, float sr, float sg, float sb, float w);
void
addPairwiseNormals(
std::vector<Eigen::Vector3i, Eigen::aligned_allocator<Eigen::Vector3i>>& coord,
std::vector<Eigen::Vector3f, Eigen::aligned_allocator<Eigen::Vector3f>>& normals,
float sx,
float sy,
float sz,
float snx,
float sny,
float snz,
float w);
void
inference(int n_iterations, std::vector<float>& result, float relax = 1.0f);
void
mapInference(int n_iterations, std::vector<int>& result, float relax = 1.0f);
void
expAndNormalize(std::vector<float>& out,
const std::vector<float>& in,
float scale,
float relax = 1.0f) const;
void
expAndNormalizeORI(float* out,
const float* in,
float scale = 1.0f,
float relax = 1.0f);
void
map(int n_iterations, std::vector<int> result, float relax = 1.0f);
std::vector<float>
runInference(int n_iterations, float relax);
void
startInference();
void
stepInference(float relax);
void
runInference(float relax);
void
getBarycentric(int idx, std::vector<float>& bary);
void
getFeatures(int idx, std::vector<float>& features);
protected:
/** Number of variables and labels */
int N_, M_;
/** Data vector */
std::vector<Eigen::Vector3i, Eigen::aligned_allocator<Eigen::Vector3i>> data_;
/** Color vector */
std::vector<Eigen::Vector3i, Eigen::aligned_allocator<Eigen::Vector3i>> color_;
/** CRF unary potentials */
/** TODO: double might use to much memory */
std::vector<float> unary_;
std::vector<float> current_;
std::vector<float> next_;
std::vector<float> tmp_;
/** Pairwise potentials */
std::vector<PairwisePotential*> pairwise_potential_;
/** Input types */
bool xyz_, rgb_, normal_;
public:
PCL_MAKE_ALIGNED_OPERATOR_NEW
};
} // namespace pcl