223 lines
10 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/point_types.h>
#include <pcl/features/feature.h>
#include <map>
#include <queue> // for std::queue
namespace pcl
{
/** \brief PFHEstimation estimates the Point Feature Histogram (PFH) descriptor for a given point cloud dataset
* containing points and normals.
*
* A commonly used type for PointOutT is pcl::PFHSignature125.
*
* \note If you use this code in any academic work, please cite:
*
* - R.B. Rusu, N. Blodow, Z.C. Marton, M. Beetz.
* Aligning Point Cloud Views using Persistent Feature Histograms.
* In Proceedings of the 21st IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
* Nice, France, September 22-26 2008.
* - R.B. Rusu, Z.C. Marton, N. Blodow, M. Beetz.
* Learning Informative Point Classes for the Acquisition of Object Model Maps.
* In Proceedings of the 10th International Conference on Control, Automation, Robotics and Vision (ICARCV),
* Hanoi, Vietnam, December 17-20 2008.
*
* \attention
* The convention for PFH features is:
* - if a query point's nearest neighbors cannot be estimated, the PFH feature will be set to NaN
* (not a number)
* - it is impossible to estimate a PFH descriptor for a point that
* doesn't have finite 3D coordinates. Therefore, any point that contains
* NaN data on x, y, or z, will have its PFH feature property set to NaN.
*
* \note The code is stateful as we do not expect this class to be multicore parallelized. Please look at
* \ref FPFHEstimationOMP for examples on parallel implementations of the FPFH (Fast Point Feature Histogram).
*
* \author Radu B. Rusu
* \ingroup features
*/
template <typename PointInT, typename PointNT, typename PointOutT = pcl::PFHSignature125>
class PFHEstimation : public FeatureFromNormals<PointInT, PointNT, PointOutT>
{
public:
using Ptr = shared_ptr<PFHEstimation<PointInT, PointNT, PointOutT> >;
using ConstPtr = shared_ptr<const PFHEstimation<PointInT, PointNT, PointOutT> >;
using Feature<PointInT, PointOutT>::feature_name_;
using Feature<PointInT, PointOutT>::getClassName;
using Feature<PointInT, PointOutT>::indices_;
using Feature<PointInT, PointOutT>::k_;
using Feature<PointInT, PointOutT>::search_parameter_;
using Feature<PointInT, PointOutT>::surface_;
using Feature<PointInT, PointOutT>::input_;
using FeatureFromNormals<PointInT, PointNT, PointOutT>::normals_;
using PointCloudOut = typename Feature<PointInT, PointOutT>::PointCloudOut;
using PointCloudIn = typename Feature<PointInT, PointOutT>::PointCloudIn;
/** \brief Empty constructor.
* Sets \a use_cache_ to false, \a nr_subdiv_ to 5, and the internal maximum cache size to 1GB.
*/
PFHEstimation () :
nr_subdiv_ (5),
d_pi_ (1.0f / (2.0f * static_cast<float> (M_PI))),
key_list_ (),
// Default 1GB memory size. Need to set it to something more conservative.
max_cache_size_ ((1ul*1024ul*1024ul*1024ul) / sizeof (std::pair<std::pair<int, int>, Eigen::Vector4f>)),
use_cache_ (false)
{
feature_name_ = "PFHEstimation";
};
/** \brief Set the maximum internal cache size. Defaults to 2GB worth of entries.
* \param[in] cache_size maximum cache size
*/
inline void
setMaximumCacheSize (unsigned int cache_size)
{
max_cache_size_ = cache_size;
}
/** \brief Get the maximum internal cache size. */
inline unsigned int
getMaximumCacheSize ()
{
return (max_cache_size_);
}
/** \brief Set whether to use an internal cache mechanism for removing redundant calculations or not.
*
* \note Depending on how the point cloud is ordered and how the nearest
* neighbors are estimated, using a cache could have a positive or a
* negative influence. Please test with and without a cache on your
* data, and choose whatever works best!
*
* See \ref setMaximumCacheSize for setting the maximum cache size
*
* \param[in] use_cache set to true to use the internal cache, false otherwise
*/
inline void
setUseInternalCache (bool use_cache)
{
use_cache_ = use_cache;
}
/** \brief Get whether the internal cache is used or not for computing the PFH features. */
inline bool
getUseInternalCache ()
{
return (use_cache_);
}
/** \brief Compute the 4-tuple representation containing the three angles and one distance between two points
* represented by Cartesian coordinates and normals.
* \note For explanations about the features, please see the literature mentioned above (the order of the
* features might be different).
* \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
* \param[in] normals the dataset containing the surface normals (assuming normalized vectors) at each point in cloud
* \param[in] p_idx the index of the first point (source)
* \param[in] q_idx the index of the second point (target)
* \param[out] f1 the first angular feature (angle between the projection of nq_idx and u)
* \param[out] f2 the second angular feature (angle between nq_idx and v)
* \param[out] f3 the third angular feature (angle between np_idx and |p_idx - q_idx|)
* \param[out] f4 the distance feature (p_idx - q_idx)
* \note For efficiency reasons, we assume that the point data passed to the method is finite.
*/
bool
computePairFeatures (const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals,
int p_idx, int q_idx, float &f1, float &f2, float &f3, float &f4);
/** \brief Estimate the PFH (Point Feature Histograms) individual signatures of the three angular (f1, f2, f3)
* features for a given point based on its spatial neighborhood of 3D points with normals
* \param[in] cloud the dataset containing the XYZ Cartesian coordinates of the two points
* \param[in] normals the dataset containing the surface normals at each point in \a cloud
* \param[in] indices the k-neighborhood point indices in the dataset
* \param[in] nr_split the number of subdivisions for each angular feature interval
* \param[out] pfh_histogram the resultant (combinatorial) PFH histogram representing the feature at the query point
*/
void
computePointPFHSignature (const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals,
const pcl::Indices &indices, int nr_split, Eigen::VectorXf &pfh_histogram);
protected:
/** \brief Estimate the Point Feature Histograms (PFH) descriptors at a set of points given by
* <setInputCloud (), setIndices ()> using the surface in setSearchSurface () and the spatial locator in
* setSearchMethod ()
* \param[out] output the resultant point cloud model dataset that contains the PFH feature estimates
*/
void
computeFeature (PointCloudOut &output) override;
/** \brief The number of subdivisions for each angular feature interval. */
int nr_subdiv_;
/** \brief Placeholder for a point's PFH signature. */
Eigen::VectorXf pfh_histogram_;
/** \brief Placeholder for a PFH 4-tuple. */
Eigen::Vector4f pfh_tuple_;
/** \brief Placeholder for a histogram index. */
int f_index_[3];
/** \brief Float constant = 1.0 / (2.0 * M_PI) */
float d_pi_;
/** \brief Internal hashmap, used to optimize efficiency of redundant computations. */
std::map<std::pair<int, int>, Eigen::Vector4f, std::less<>, Eigen::aligned_allocator<std::pair<const std::pair<int, int>, Eigen::Vector4f> > > feature_map_;
/** \brief Queue of pairs saved, used to constrain memory usage. */
std::queue<std::pair<int, int> > key_list_;
/** \brief Maximum size of internal cache memory. */
unsigned int max_cache_size_;
/** \brief Set to true to use the internal cache for removing redundant computations. */
bool use_cache_;
};
}
#ifdef PCL_NO_PRECOMPILE
#include <pcl/features/impl/pfh.hpp>
#endif