125 lines
5.6 KiB
C++
125 lines
5.6 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
|
* Copyright (c) 2011, Alexandru-Eugen Ichim
|
|
* Copyright (c) 2012-, Open Perception, Inc.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $Id$
|
|
*/
|
|
|
|
#ifndef PCL_FEATURES_IMPL_PPF_H_
|
|
#define PCL_FEATURES_IMPL_PPF_H_
|
|
|
|
#include <pcl/features/ppf.h>
|
|
#include <pcl/features/pfh.h>
|
|
#include <pcl/features/pfh_tools.h> // for computePairFeatures
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointInT, typename PointNT, typename PointOutT>
|
|
pcl::PPFEstimation<PointInT, PointNT, PointOutT>::PPFEstimation ()
|
|
: FeatureFromNormals <PointInT, PointNT, PointOutT> ()
|
|
{
|
|
feature_name_ = "PPFEstimation";
|
|
// Slight hack in order to pass the check for the presence of a search method in Feature::initCompute ()
|
|
Feature<PointInT, PointOutT>::tree_.reset (new pcl::search::KdTree <PointInT> ());
|
|
Feature<PointInT, PointOutT>::search_radius_ = 1.0f;
|
|
}
|
|
|
|
|
|
//////////////////////////////////////////////////////////////////////////////////////////////
|
|
template <typename PointInT, typename PointNT, typename PointOutT> void
|
|
pcl::PPFEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
|
|
{
|
|
// Initialize output container - overwrite the sizes done by Feature::initCompute ()
|
|
output.resize (indices_->size () * input_->size ());
|
|
output.height = 1;
|
|
output.width = output.size ();
|
|
output.is_dense = true;
|
|
|
|
// Compute point pair features for every pair of points in the cloud
|
|
for (std::size_t index_i = 0; index_i < indices_->size (); ++index_i)
|
|
{
|
|
std::size_t i = (*indices_)[index_i];
|
|
for (std::size_t j = 0 ; j < input_->size (); ++j)
|
|
{
|
|
PointOutT p;
|
|
if (i != j)
|
|
{
|
|
if (//pcl::computePPFPairFeature
|
|
pcl::computePairFeatures ((*input_)[i].getVector4fMap (),
|
|
(*normals_)[i].getNormalVector4fMap (),
|
|
(*input_)[j].getVector4fMap (),
|
|
(*normals_)[j].getNormalVector4fMap (),
|
|
p.f1, p.f2, p.f3, p.f4))
|
|
{
|
|
// Calculate alpha_m angle
|
|
Eigen::Vector3f model_reference_point = (*input_)[i].getVector3fMap (),
|
|
model_reference_normal = (*normals_)[i].getNormalVector3fMap (),
|
|
model_point = (*input_)[j].getVector3fMap ();
|
|
float rotation_angle = std::acos (model_reference_normal.dot (Eigen::Vector3f::UnitX ()));
|
|
bool parallel_to_x = (model_reference_normal.y() == 0.0f && model_reference_normal.z() == 0.0f);
|
|
Eigen::Vector3f rotation_axis = (parallel_to_x)?(Eigen::Vector3f::UnitY ()):(model_reference_normal.cross (Eigen::Vector3f::UnitX ()). normalized());
|
|
Eigen::AngleAxisf rotation_mg (rotation_angle, rotation_axis);
|
|
Eigen::Affine3f transform_mg (Eigen::Translation3f ( rotation_mg * ((-1) * model_reference_point)) * rotation_mg);
|
|
|
|
Eigen::Vector3f model_point_transformed = transform_mg * model_point;
|
|
float angle = std::atan2 ( -model_point_transformed(2), model_point_transformed(1));
|
|
if (std::sin (angle) * model_point_transformed(2) < 0.0f)
|
|
angle *= (-1);
|
|
p.alpha_m = -angle;
|
|
}
|
|
else
|
|
{
|
|
PCL_ERROR ("[pcl::%s::computeFeature] Computing pair feature vector between points %u and %u went wrong.\n", getClassName ().c_str (), i, j);
|
|
p.f1 = p.f2 = p.f3 = p.f4 = p.alpha_m = std::numeric_limits<float>::quiet_NaN ();
|
|
output.is_dense = false;
|
|
}
|
|
}
|
|
// Do not calculate the feature for identity pairs (i, i) as they are not used
|
|
// in the following computations
|
|
else
|
|
{
|
|
p.f1 = p.f2 = p.f3 = p.f4 = p.alpha_m = std::numeric_limits<float>::quiet_NaN ();
|
|
output.is_dense = false;
|
|
}
|
|
|
|
output[index_i*input_->size () + j] = p;
|
|
}
|
|
}
|
|
}
|
|
|
|
#define PCL_INSTANTIATE_PPFEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::PPFEstimation<T,NT,OutT>;
|
|
|
|
|
|
#endif // PCL_FEATURES_IMPL_PPF_H_
|