162 lines
6.4 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2011, Alexandru-Eugen Ichim
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*/
#ifndef PCL_FEATURES_IMPL_PFHRGB_H_
#define PCL_FEATURES_IMPL_PFHRGB_H_
#include <pcl/features/pfhrgb.h>
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> bool
pcl::PFHRGBEstimation<PointInT, PointNT, PointOutT>::computeRGBPairFeatures (
const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals,
int p_idx, int q_idx,
float &f1, float &f2, float &f3, float &f4, float &f5, float &f6, float &f7)
{
Eigen::Vector4i colors1 (cloud[p_idx].r, cloud[p_idx].g, cloud[p_idx].b, 0),
colors2 (cloud[q_idx].r, cloud[q_idx].g, cloud[q_idx].b, 0);
pcl::computeRGBPairFeatures (cloud[p_idx].getVector4fMap (), normals[p_idx].getNormalVector4fMap (),
colors1,
cloud[q_idx].getVector4fMap (), normals[q_idx].getNormalVector4fMap (),
colors2,
f1, f2, f3, f4, f5, f6, f7);
return (true);
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::PFHRGBEstimation<PointInT, PointNT, PointOutT>::computePointPFHRGBSignature (
const pcl::PointCloud<PointInT> &cloud, const pcl::PointCloud<PointNT> &normals,
const pcl::Indices &indices, int nr_split, Eigen::VectorXf &pfhrgb_histogram)
{
int h_index, h_p;
// Clear the resultant point histogram
pfhrgb_histogram.setZero ();
// Factorization constant
float hist_incr = 100.0f / static_cast<float> (indices.size () * (indices.size () - 1) / 2);
// Iterate over all the points in the neighborhood
for (const auto& index_i: indices)
{
for (const auto& index_j: indices)
{
// Avoid unnecessary returns
if (index_i == index_j)
continue;
// Compute the pair NNi to NNj
if (!computeRGBPairFeatures (cloud, normals, index_i, index_j,
pfhrgb_tuple_[0], pfhrgb_tuple_[1], pfhrgb_tuple_[2], pfhrgb_tuple_[3],
pfhrgb_tuple_[4], pfhrgb_tuple_[5], pfhrgb_tuple_[6]))
continue;
// Normalize the f1, f2, f3, f5, f6, f7 features and push them in the histogram
f_index_[0] = static_cast<int> (std::floor (nr_split * ((pfhrgb_tuple_[0] + M_PI) * d_pi_)));
// @TODO: confirm "not to do for i == 3"
for (int i = 1; i < 3; ++i)
{
const float feature_value = nr_split * ((pfhrgb_tuple_[i] + 1.0) * 0.5);
f_index_[i] = static_cast<int> (std::floor (feature_value));
}
// color ratios are in [-1, 1]
for (int i = 4; i < 7; ++i)
{
const float feature_value = nr_split * ((pfhrgb_tuple_[i] + 1.0) * 0.5);
f_index_[i] = static_cast<int> (std::floor (feature_value));
}
for (auto& feature: f_index_)
{
feature = std::min(nr_split - 1, std::max(0, feature));
}
// Copy into the histogram
h_index = 0;
h_p = 1;
for (int d = 0; d < 3; ++d)
{
h_index += h_p * f_index_[d];
h_p *= nr_split;
}
pfhrgb_histogram[h_index] += hist_incr;
// and the colors
h_index = 125;
h_p = 1;
for (int d = 4; d < 7; ++d)
{
h_index += h_p * f_index_[d];
h_p *= nr_split;
}
pfhrgb_histogram[h_index] += hist_incr;
}
}
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::PFHRGBEstimation<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
{
/// nr_subdiv^3 for RGB and nr_subdiv^3 for the angular features
pfhrgb_histogram_.setZero (2 * nr_subdiv_ * nr_subdiv_ * nr_subdiv_);
pfhrgb_tuple_.setZero (7);
// Allocate enough space to hold the results
// \note This resize is irrelevant for a radiusSearch ().
pcl::Indices nn_indices (k_);
std::vector<float> nn_dists (k_);
// Iterating over the entire index vector
for (std::size_t idx = 0; idx < indices_->size (); ++idx)
{
this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists);
// Estimate the PFH signature at each patch
computePointPFHRGBSignature (*surface_, *normals_, nn_indices, nr_subdiv_, pfhrgb_histogram_);
std::copy_n (pfhrgb_histogram_.data (), pfhrgb_histogram_.size (),
output[idx].histogram);
}
}
#define PCL_INSTANTIATE_PFHRGBEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::PFHRGBEstimation<T,NT,OutT>;
#endif /* PCL_FEATURES_IMPL_PFHRGB_H_ */