164 lines
6.4 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#ifndef PCL_FEATURES_IMPL_MOMENT_INVARIANTS_H_
#define PCL_FEATURES_IMPL_MOMENT_INVARIANTS_H_
#include <pcl/features/moment_invariants.h>
#include <pcl/common/centroid.h>
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointOutT> void
pcl::MomentInvariantsEstimation<PointInT, PointOutT>::computePointMomentInvariants (
const pcl::PointCloud<PointInT> &cloud, const pcl::Indices &indices,
float &j1, float &j2, float &j3)
{
// Estimate the XYZ centroid
compute3DCentroid (cloud, indices, xyz_centroid_);
// Initialize the centralized moments
float mu200 = 0, mu020 = 0, mu002 = 0, mu110 = 0, mu101 = 0, mu011 = 0;
// Iterate over the nearest neighbors set
for (const auto &index : indices)
{
// Demean the points
temp_pt_[0] = cloud[index].x - xyz_centroid_[0];
temp_pt_[1] = cloud[index].y - xyz_centroid_[1];
temp_pt_[2] = cloud[index].z - xyz_centroid_[2];
mu200 += temp_pt_[0] * temp_pt_[0];
mu020 += temp_pt_[1] * temp_pt_[1];
mu002 += temp_pt_[2] * temp_pt_[2];
mu110 += temp_pt_[0] * temp_pt_[1];
mu101 += temp_pt_[0] * temp_pt_[2];
mu011 += temp_pt_[1] * temp_pt_[2];
}
// Save the moment invariants
j1 = mu200 + mu020 + mu002;
j2 = mu200*mu020 + mu200*mu002 + mu020*mu002 - mu110*mu110 - mu101*mu101 - mu011*mu011;
j3 = mu200*mu020*mu002 + 2*mu110*mu101*mu011 - mu002*mu110*mu110 - mu020*mu101*mu101 - mu200*mu011*mu011;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointOutT> void
pcl::MomentInvariantsEstimation<PointInT, PointOutT>::computePointMomentInvariants (
const pcl::PointCloud<PointInT> &cloud, float &j1, float &j2, float &j3)
{
// Estimate the XYZ centroid
compute3DCentroid (cloud, xyz_centroid_);
// Initialize the centralized moments
float mu200 = 0, mu020 = 0, mu002 = 0, mu110 = 0, mu101 = 0, mu011 = 0;
// Iterate over the nearest neighbors set
for (const auto& point: cloud.points)
{
// Demean the points
temp_pt_[0] = point.x - xyz_centroid_[0];
temp_pt_[1] = point.y - xyz_centroid_[1];
temp_pt_[2] = point.z - xyz_centroid_[2];
mu200 += temp_pt_[0] * temp_pt_[0];
mu020 += temp_pt_[1] * temp_pt_[1];
mu002 += temp_pt_[2] * temp_pt_[2];
mu110 += temp_pt_[0] * temp_pt_[1];
mu101 += temp_pt_[0] * temp_pt_[2];
mu011 += temp_pt_[1] * temp_pt_[2];
}
// Save the moment invariants
j1 = mu200 + mu020 + mu002;
j2 = mu200*mu020 + mu200*mu002 + mu020*mu002 - mu110*mu110 - mu101*mu101 - mu011*mu011;
j3 = mu200*mu020*mu002 + 2*mu110*mu101*mu011 - mu002*mu110*mu110 - mu020*mu101*mu101 - mu200*mu011*mu011;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointOutT> void
pcl::MomentInvariantsEstimation<PointInT, PointOutT>::computeFeature (PointCloudOut &output)
{
// Allocate enough space to hold the results
// \note This resize is irrelevant for a radiusSearch ().
pcl::Indices nn_indices (k_);
std::vector<float> nn_dists (k_);
output.is_dense = true;
// Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense
if (input_->is_dense)
{
// Iterating over the entire index vector
for (std::size_t idx = 0; idx < indices_->size (); ++idx)
{
if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
{
output[idx].j1 = output[idx].j2 = output[idx].j3 = std::numeric_limits<float>::quiet_NaN ();
output.is_dense = false;
continue;
}
computePointMomentInvariants (*surface_, nn_indices,
output[idx].j1, output[idx].j2, output[idx].j3);
}
}
else
{
// Iterating over the entire index vector
for (std::size_t idx = 0; idx < indices_->size (); ++idx)
{
if (!isFinite ((*input_)[(*indices_)[idx]]) ||
this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
{
output[idx].j1 = output[idx].j2 = output[idx].j3 = std::numeric_limits<float>::quiet_NaN ();
output.is_dense = false;
continue;
}
computePointMomentInvariants (*surface_, nn_indices,
output[idx].j1, output[idx].j2, output[idx].j3);
}
}
}
#define PCL_INSTANTIATE_MomentInvariantsEstimation(T,NT) template class PCL_EXPORTS pcl::MomentInvariantsEstimation<T,NT>;
#endif // PCL_FEATURES_IMPL_MOMENT_INVARIANTS_H_