177 lines
6.7 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2011, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* $Id$
*
*/
#pragma once
#include <pcl/features/fpfh_omp.h>
#include <pcl/common/point_tests.h> // for pcl::isFinite
#include <numeric>
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::FPFHEstimationOMP<PointInT, PointNT, PointOutT>::setNumberOfThreads (unsigned int nr_threads)
{
if (nr_threads == 0)
#ifdef _OPENMP
threads_ = omp_get_num_procs();
#else
threads_ = 1;
#endif
else
threads_ = nr_threads;
}
//////////////////////////////////////////////////////////////////////////////////////////////
template <typename PointInT, typename PointNT, typename PointOutT> void
pcl::FPFHEstimationOMP<PointInT, PointNT, PointOutT>::computeFeature (PointCloudOut &output)
{
std::vector<int> spfh_indices_vec;
std::vector<int> spfh_hist_lookup (surface_->size ());
// Build a list of (unique) indices for which we will need to compute SPFH signatures
// (We need an SPFH signature for every point that is a neighbor of any point in input_[indices_])
if (surface_ != input_ ||
indices_->size () != surface_->size ())
{
pcl::Indices nn_indices (k_); // \note These resizes are irrelevant for a radiusSearch ().
std::vector<float> nn_dists (k_);
std::set<int> spfh_indices_set;
for (std::size_t idx = 0; idx < indices_->size (); ++idx)
{
int p_idx = (*indices_)[idx];
if (!isFinite ((*input_)[p_idx]) ||
this->searchForNeighbors (p_idx, search_parameter_, nn_indices, nn_dists) == 0)
continue;
spfh_indices_set.insert (nn_indices.begin (), nn_indices.end ());
}
spfh_indices_vec.resize (spfh_indices_set.size ());
std::copy (spfh_indices_set.cbegin (), spfh_indices_set.cend (), spfh_indices_vec.begin ());
}
else
{
// Special case: When a feature must be computed at every point, there is no need for a neighborhood search
spfh_indices_vec.resize (indices_->size ());
std::iota(spfh_indices_vec.begin (), spfh_indices_vec.end (),
static_cast<decltype(spfh_indices_vec)::value_type>(0));
}
// Initialize the arrays that will store the SPFH signatures
const auto data_size = spfh_indices_vec.size ();
hist_f1_.setZero (data_size, nr_bins_f1_);
hist_f2_.setZero (data_size, nr_bins_f2_);
hist_f3_.setZero (data_size, nr_bins_f3_);
pcl::Indices nn_indices (k_); // \note These resizes are irrelevant for a radiusSearch ().
std::vector<float> nn_dists (k_);
// Compute SPFH signatures for every point that needs them
#pragma omp parallel for \
default(none) \
shared(spfh_hist_lookup, spfh_indices_vec) \
firstprivate(nn_indices, nn_dists) \
num_threads(threads_)
for (std::ptrdiff_t i = 0; i < static_cast<std::ptrdiff_t> (spfh_indices_vec.size ()); ++i)
{
// Get the next point index
int p_idx = spfh_indices_vec[i];
// Find the neighborhood around p_idx
if (!isFinite ((*surface_)[p_idx]) ||
this->searchForNeighbors (*surface_, p_idx, search_parameter_, nn_indices, nn_dists) == 0)
continue;
// Estimate the SPFH signature around p_idx
this->computePointSPFHSignature (*surface_, *normals_, p_idx, i, nn_indices, hist_f1_, hist_f2_, hist_f3_);
// Populate a lookup table for converting a point index to its corresponding row in the spfh_hist_* matrices
spfh_hist_lookup[p_idx] = i;
}
// Initialize the array that will store the FPFH signature
int nr_bins = nr_bins_f1_ + nr_bins_f2_ + nr_bins_f3_;
nn_indices.clear();
nn_dists.clear();
// Iterate over the entire index vector
#pragma omp parallel for \
default(none) \
shared(nr_bins, output, spfh_hist_lookup) \
firstprivate(nn_dists, nn_indices) \
num_threads(threads_)
for (std::ptrdiff_t idx = 0; idx < static_cast<std::ptrdiff_t> (indices_->size ()); ++idx)
{
// Find the indices of point idx's neighbors...
if (!isFinite ((*input_)[(*indices_)[idx]]) ||
this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0)
{
for (int d = 0; d < nr_bins; ++d)
output[idx].histogram[d] = std::numeric_limits<float>::quiet_NaN ();
output.is_dense = false;
continue;
}
// ... and remap the nn_indices values so that they represent row indices in the spfh_hist_* matrices
// instead of indices into surface_->points
for (auto &nn_index : nn_indices)
nn_index = spfh_hist_lookup[nn_index];
// Compute the FPFH signature (i.e. compute a weighted combination of local SPFH signatures) ...
Eigen::VectorXf fpfh_histogram = Eigen::VectorXf::Zero (nr_bins);
weightPointSPFHSignature (hist_f1_, hist_f2_, hist_f3_, nn_indices, nn_dists, fpfh_histogram);
// ...and copy it into the output cloud
for (int d = 0; d < nr_bins; ++d)
output[idx].histogram[d] = fpfh_histogram[d];
}
}
#define PCL_INSTANTIATE_FPFHEstimationOMP(T,NT,OutT) template class PCL_EXPORTS pcl::FPFHEstimationOMP<T,NT,OutT>;