681 lines
22 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2012-, Open Perception , Inc.
* Copyright (C) 2011 The Autonomous Systems Lab (ASL), ETH Zurich,
* Stefan Leutenegger, Simon Lynen and Margarita Chli.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
*/
#ifndef PCL_FEATURES_IMPL_BRISK_2D_HPP_
#define PCL_FEATURES_IMPL_BRISK_2D_HPP_
namespace pcl
{
template <typename PointInT, typename PointOutT, typename KeypointT, typename IntensityT>
BRISK2DEstimation<PointInT, PointOutT, KeypointT, IntensityT>::BRISK2DEstimation ()
: rotation_invariance_enabled_ (true)
, scale_invariance_enabled_ (true)
, pattern_scale_ (1.0f)
, input_cloud_ (), keypoints_ (), scale_range_ (), pattern_points_ (), points_ ()
, n_rot_ (1024), scale_list_ (nullptr), size_list_ (nullptr)
, scales_ (64)
, scalerange_ (30)
, basic_size_ (12.0)
, strings_ (0), d_max_ (0.0f), d_min_ (0.0f), short_pairs_ (), long_pairs_ ()
, no_short_pairs_ (0), no_long_pairs_ (0)
, intensity_ ()
, name_ ("BRISK2Destimation")
{
// Since we do not assume pattern_scale_ should be changed by the user, we
// can initialize the kernel in the constructor
std::vector<float> r_list;
std::vector<int> n_list;
// this is the standard pattern found to be suitable also
r_list.resize (5);
n_list.resize (5);
const float f = 0.85f * pattern_scale_;
r_list[0] = f * 0.0f;
r_list[1] = f * 2.9f;
r_list[2] = f * 4.9f;
r_list[3] = f * 7.4f;
r_list[4] = f * 10.8f;
n_list[0] = 1;
n_list[1] = 10;
n_list[2] = 14;
n_list[3] = 15;
n_list[4] = 20;
generateKernel (r_list, n_list, 5.85f * pattern_scale_, 8.2f * pattern_scale_);
}
template <typename PointInT, typename PointOutT, typename KeypointT, typename IntensityT>
BRISK2DEstimation<PointInT, PointOutT, KeypointT, IntensityT>::~BRISK2DEstimation ()
{
delete [] pattern_points_;
delete [] short_pairs_;
delete [] long_pairs_;
delete [] scale_list_;
delete [] size_list_;
}
template <typename PointInT, typename PointOutT, typename KeypointT, typename IntensityT> void
BRISK2DEstimation<PointInT, PointOutT, KeypointT, IntensityT>::generateKernel (
std::vector<float> &radius_list,
std::vector<int> &number_list, float d_max, float d_min,
std::vector<int> index_change)
{
d_max_ = d_max;
d_min_ = d_min;
// get the total number of points
const auto rings = radius_list.size ();
assert (radius_list.size () != 0 && radius_list.size () == number_list.size ());
points_ = 0; // remember the total number of points
for (const auto number: number_list)
points_ += number;
// set up the patterns
pattern_points_ = new BriskPatternPoint[points_*scales_*n_rot_];
BriskPatternPoint* pattern_iterator = pattern_points_;
// define the scale discretization:
static const float lb_scale = std::log (scalerange_) / std::log (2.0);
static const float lb_scale_step = lb_scale / (float (scales_));
scale_list_ = new float[scales_];
size_list_ = new unsigned int[scales_];
const float sigma_scale = 1.3f;
for (unsigned int scale = 0; scale < scales_; ++scale)
{
scale_list_[scale] = static_cast<float> (pow (double (2.0), static_cast<double> (float (scale) * lb_scale_step)));
size_list_[scale] = 0;
// generate the pattern points look-up
for (std::size_t rot = 0; rot < n_rot_; ++rot)
{
// this is the rotation of the feature
double theta = double (rot) * 2 * M_PI / double (n_rot_);
for (int ring = 0; ring < static_cast<int>(rings); ++ring)
{
for (int num = 0; num < number_list[ring]; ++num)
{
// the actual coordinates on the circle
double alpha = double (num) * 2 * M_PI / double (number_list[ring]);
// feature rotation plus angle of the point
pattern_iterator->x = scale_list_[scale] * radius_list[ring] * static_cast<float> (std::cos (alpha + theta));
pattern_iterator->y = scale_list_[scale] * radius_list[ring] * static_cast<float> (sin (alpha + theta));
// and the gaussian kernel sigma
if (ring == 0)
pattern_iterator->sigma = sigma_scale * scale_list_[scale] * 0.5f;
else
pattern_iterator->sigma = static_cast<float> (sigma_scale * scale_list_[scale] * (double (radius_list[ring])) * sin (M_PI / double (number_list[ring])));
// adapt the sizeList if necessary
const unsigned int size = static_cast<unsigned int> (std::ceil (((scale_list_[scale] * radius_list[ring]) + pattern_iterator->sigma)) + 1);
if (size_list_[scale] < size)
size_list_[scale] = size;
// increment the iterator
++pattern_iterator;
}
}
}
}
// now also generate pairings
short_pairs_ = new BriskShortPair[points_ * (points_ - 1) / 2];
long_pairs_ = new BriskLongPair[points_ * (points_ - 1) / 2];
no_short_pairs_ = 0;
no_long_pairs_ = 0;
// fill index_change with 0..n if empty
if (index_change.empty ())
{
index_change.resize (points_ * (points_ - 1) / 2);
}
std::iota(index_change.begin (), index_change.end (), 0);
const float d_min_sq = d_min_ * d_min_;
const float d_max_sq = d_max_ * d_max_;
for (unsigned int i = 1; i < points_; i++)
{
for (unsigned int j = 0; j < i; j++)
{ //(find all the pairs)
// point pair distance:
const float dx = pattern_points_[j].x - pattern_points_[i].x;
const float dy = pattern_points_[j].y - pattern_points_[i].y;
const float norm_sq = (dx*dx+dy*dy);
if (norm_sq > d_min_sq)
{
// save to long pairs
BriskLongPair& longPair = long_pairs_[no_long_pairs_];
longPair.weighted_dx = int ((dx / (norm_sq)) * 2048.0 + 0.5);
longPair.weighted_dy = int ((dy / (norm_sq)) * 2048.0 + 0.5);
longPair.i = i;
longPair.j = j;
++no_long_pairs_;
}
else if (norm_sq < d_max_sq)
{
// save to short pairs
assert (no_short_pairs_ < index_change.size ()); // make sure the user passes something sensible
BriskShortPair& shortPair = short_pairs_[index_change[no_short_pairs_]];
shortPair.j = j;
shortPair.i = i;
++no_short_pairs_;
}
}
}
// no bits:
strings_ = int (std::ceil ((float (no_short_pairs_)) / 128.0)) * 4 * 4;
}
template <typename PointInT, typename PointOutT, typename KeypointT, typename IntensityT> inline int
BRISK2DEstimation<PointInT, PointOutT, KeypointT, IntensityT>::smoothedIntensity (
const std::vector<unsigned char> &image,
int image_width, int,
//const Stefan& integral,
const std::vector<int> &integral_image,
const float key_x, const float key_y, const unsigned int scale,
const unsigned int rot, const unsigned int point) const
{
// get the float position
const BriskPatternPoint& brisk_point = pattern_points_[scale * n_rot_*points_ + rot * points_ + point];
const float xf = brisk_point.x + key_x;
const float yf = brisk_point.y + key_y;
const int x = int (xf);
const int y = int (yf);
const int& imagecols = image_width;
// get the sigma:
const float sigma_half = brisk_point.sigma;
const float area = 4.0f * sigma_half * sigma_half;
// Get the point step
// calculate output:
int ret_val;
if (sigma_half < 0.5)
{
// interpolation multipliers:
const int r_x = static_cast<int> ((xf - float (x)) * 1024);
const int r_y = static_cast<int> ((yf - float (y)) * 1024);
const int r_x_1 = (1024 - r_x);
const int r_y_1 = (1024 - r_y);
//+const unsigned char* ptr = static_cast<const unsigned char*> (&image[0].r) + x + y * imagecols;
const unsigned char* ptr = static_cast<const unsigned char*>(&image[0]) + x + y * imagecols;
// just interpolate:
ret_val = (r_x_1 * r_y_1 * int (*ptr));
//+ptr += sizeof (PointInT);
ptr++;
ret_val += (r_x * r_y_1 * int (*ptr));
//+ptr += (imagecols * sizeof (PointInT));
ptr += imagecols;
ret_val += (r_x * r_y * int (*ptr));
//+ptr -= sizeof (PointInT);
ptr--;
ret_val += (r_x_1 * r_y * int (*ptr));
return (ret_val + 512) / 1024;
}
// this is the standard case (simple, not speed optimized yet):
// scaling:
const int scaling = static_cast<int> (4194304.0f / area);
const int scaling2 = static_cast<int> (float (scaling) * area / 1024.0f);
// the integral image is larger:
const int integralcols = imagecols + 1;
// calculate borders
const float x_1 = xf - sigma_half;
const float x1 = xf + sigma_half;
const float y_1 = yf - sigma_half;
const float y1 = yf + sigma_half;
const int x_left = int (x_1 + 0.5);
const int y_top = int (y_1 + 0.5);
const int x_right = int (x1 + 0.5);
const int y_bottom = int (y1 + 0.5);
// overlap area - multiplication factors:
const float r_x_1 = float (x_left) - x_1 + 0.5f;
const float r_y_1 = float (y_top) - y_1 + 0.5f;
const float r_x1 = x1 - float (x_right) + 0.5f;
const float r_y1 = y1 - float (y_bottom) + 0.5f;
const int dx = x_right - x_left - 1;
const int dy = y_bottom - y_top - 1;
const int A = static_cast<int> ((r_x_1 * r_y_1) * float (scaling));
const int B = static_cast<int> ((r_x1 * r_y_1) * float (scaling));
const int C = static_cast<int> ((r_x1 * r_y1) * float (scaling));
const int D = static_cast<int> ((r_x_1 * r_y1) * float (scaling));
const int r_x_1_i = static_cast<int> (r_x_1 * float (scaling));
const int r_y_1_i = static_cast<int> (r_y_1 * float (scaling));
const int r_x1_i = static_cast<int> (r_x1 * float (scaling));
const int r_y1_i = static_cast<int> (r_y1 * float (scaling));
if (dx + dy > 2)
{
// now the calculation:
//+const unsigned char* ptr = static_cast<const unsigned char*> (&image[0].r) + x_left + imagecols * y_top;
const unsigned char* ptr = static_cast<const unsigned char*>(&image[0]) + x_left + imagecols * y_top;
// first the corners:
ret_val = A * int (*ptr);
//+ptr += (dx + 1) * sizeof (PointInT);
ptr += dx + 1;
ret_val += B * int (*ptr);
//+ptr += (dy * imagecols + 1) * sizeof (PointInT);
ptr += dy * imagecols + 1;
ret_val += C * int (*ptr);
//+ptr -= (dx + 1) * sizeof (PointInT);
ptr -= dx + 1;
ret_val += D * int (*ptr);
// next the edges:
//+int* ptr_integral;// = static_cast<int*> (integral.data) + x_left + integralcols * y_top + 1;
const int* ptr_integral = static_cast<const int*> (&integral_image[0]) + x_left + integralcols * y_top + 1;
// find a simple path through the different surface corners
const int tmp1 = (*ptr_integral);
ptr_integral += dx;
const int tmp2 = (*ptr_integral);
ptr_integral += integralcols;
const int tmp3 = (*ptr_integral);
ptr_integral++;
const int tmp4 = (*ptr_integral);
ptr_integral += dy * integralcols;
const int tmp5 = (*ptr_integral);
ptr_integral--;
const int tmp6 = (*ptr_integral);
ptr_integral += integralcols;
const int tmp7 = (*ptr_integral);
ptr_integral -= dx;
const int tmp8 = (*ptr_integral);
ptr_integral -= integralcols;
const int tmp9 = (*ptr_integral);
ptr_integral--;
const int tmp10 = (*ptr_integral);
ptr_integral -= dy * integralcols;
const int tmp11 = (*ptr_integral);
ptr_integral++;
const int tmp12 = (*ptr_integral);
// assign the weighted surface integrals:
const int upper = (tmp3 -tmp2 +tmp1 -tmp12) * r_y_1_i;
const int middle = (tmp6 -tmp3 +tmp12 -tmp9) * scaling;
const int left = (tmp9 -tmp12 +tmp11 -tmp10) * r_x_1_i;
const int right = (tmp5 -tmp4 +tmp3 -tmp6) * r_x1_i;
const int bottom = (tmp7 -tmp6 +tmp9 -tmp8) * r_y1_i;
return (ret_val + upper + middle + left + right + bottom + scaling2 / 2) / scaling2;
}
// now the calculation:
//const unsigned char* ptr = static_cast<const unsigned char*> (&image[0].r) + x_left + imagecols * y_top;
const unsigned char* ptr = static_cast<const unsigned char*>(&image[0]) + x_left + imagecols * y_top;
// first row:
ret_val = A * int (*ptr);
//+ptr += sizeof (PointInT);
ptr++;
//+const unsigned char* end1 = ptr + (dx * sizeof (PointInT));
const unsigned char* end1 = ptr + dx;
//+for (; ptr < end1; ptr += sizeof (PointInT))
for (; ptr < end1; ptr++)
ret_val += r_y_1_i * int (*ptr);
ret_val += B * int (*ptr);
// middle ones:
//+ptr += (imagecols - dx - 1) * sizeof (PointInT);
ptr += imagecols - dx - 1;
//+const unsigned char* end_j = ptr + (dy * imagecols) * sizeof (PointInT);
const unsigned char* end_j = ptr + dy * imagecols;
//+for (; ptr < end_j; ptr += (imagecols - dx - 1) * sizeof (PointInT))
for (; ptr < end_j; ptr += imagecols - dx - 1)
{
ret_val += r_x_1_i * int (*ptr);
//+ptr += sizeof (PointInT);
ptr++;
//+const unsigned char* end2 = ptr + (dx * sizeof (PointInT));
const unsigned char* end2 = ptr + dx;
//+for (; ptr < end2; ptr += sizeof (PointInT))
for (; ptr < end2; ptr++)
ret_val += int (*ptr) * scaling;
ret_val += r_x1_i * int (*ptr);
}
// last row:
ret_val += D * int (*ptr);
//+ptr += sizeof (PointInT);
ptr++;
//+const unsigned char* end3 = ptr + (dx * sizeof (PointInT));
const unsigned char* end3 = ptr + dx;
//+for (; ptr<end3; ptr += sizeof (PointInT))
for (; ptr<end3; ptr++)
ret_val += r_y1_i * int (*ptr);
ret_val += C * int (*ptr);
return (ret_val + scaling2 / 2) / scaling2;
}
template <typename PointInT, typename PointOutT, typename KeypointT, typename IntensityT> bool
BRISK2DEstimation<PointInT, PointOutT, KeypointT, IntensityT>::RoiPredicate (
const float min_x, const float min_y,
const float max_x, const float max_y, const KeypointT& pt)
{
return ((pt.x < min_x) || (pt.x >= max_x) || (pt.y < min_y) || (pt.y >= max_y));
}
template <typename PointInT, typename PointOutT, typename KeypointT, typename IntensityT> void
BRISK2DEstimation<PointInT, PointOutT, KeypointT, IntensityT>::compute (
PointCloudOutT &output)
{
if (!input_cloud_->isOrganized ())
{
PCL_ERROR ("[pcl::%s::initCompute] %s doesn't support non organized clouds!\n", name_.c_str ());
return;
}
// image size
const index_t width = static_cast<index_t>(input_cloud_->width);
const index_t height = static_cast<index_t>(input_cloud_->height);
// destination for intensity data; will be forwarded to BRISK
std::vector<unsigned char> image_data (width*height);
for (std::size_t i = 0; i < image_data.size (); ++i)
image_data[i] = static_cast<unsigned char> (intensity_ ((*input_cloud_)[i]));
// Remove keypoints very close to the border
auto ksize = keypoints_->size ();
std::vector<int> kscales; // remember the scale per keypoint
kscales.resize (ksize);
// initialize constants
static const float lb_scalerange = std::log2 (scalerange_);
typename std::vector<KeypointT, Eigen::aligned_allocator<KeypointT> >::iterator beginning = keypoints_->points.begin ();
std::vector<int>::iterator beginningkscales = kscales.begin ();
static const float basic_size_06 = basic_size_ * 0.6f;
unsigned int basicscale = 0;
if (!scale_invariance_enabled_)
basicscale = std::max (static_cast<int> (float (scales_) / lb_scalerange * (std::log2 (1.45f * basic_size_ / (basic_size_06))) + 0.5f), 0);
for (std::size_t k = 0; k < ksize; k++)
{
unsigned int scale;
if (scale_invariance_enabled_)
{
scale = std::max (static_cast<int> (float (scales_) / lb_scalerange * (std::log2 ((*keypoints_)[k].size / (basic_size_06))) + 0.5f), 0);
// saturate
if (scale >= scales_) scale = scales_ - 1;
kscales[k] = scale;
}
else
{
scale = basicscale;
kscales[k] = scale;
}
const int border = size_list_[scale];
const int border_x = width - border;
const int border_y = height - border;
if (RoiPredicate (float (border), float (border), float (border_x), float (border_y), (*keypoints_)[k]))
{
//std::cerr << "remove keypoint" << std::endl;
keypoints_->points.erase (beginning + k);
kscales.erase (beginningkscales + k);
if (k == 0)
{
beginning = keypoints_->points.begin ();
beginningkscales = kscales.begin ();
}
ksize--;
k--;
}
}
keypoints_->width = keypoints_->size ();
keypoints_->height = 1;
// first, calculate the integral image over the whole image:
// current integral image
std::vector<int> integral ((width+1)*(height+1), 0); // the integral image
for (index_t row_index = 1; row_index < height; ++row_index)
{
for (index_t col_index = 1; col_index < width; ++col_index)
{
const std::size_t index = row_index*width+col_index;
const std::size_t index2 = (row_index)*(width+1)+(col_index);
integral[index2] = static_cast<int> (image_data[index])
- integral[index2-1-(width+1)]
+ integral[index2-(width+1)]
+ integral[index2-1];
}
}
int* values = new int[points_]; // for temporary use
// resize the descriptors:
//output = zeros (ksize, strings_);
// now do the extraction for all keypoints:
// temporary variables containing gray values at sample points:
int t1;
int t2;
// the feature orientation
int direction0;
int direction1;
output.resize (ksize);
//output.width = ksize;
//output.height = 1;
for (std::size_t k = 0; k < ksize; k++)
{
unsigned char* ptr = &output[k].descriptor[0];
int theta;
KeypointT &kp = (*keypoints_)[k];
const int& scale = kscales[k];
int shifter = 0;
int* pvalues = values;
const float& x = float (kp.x);
const float& y = float (kp.y);
if (true) // kp.angle==-1
{
if (!rotation_invariance_enabled_)
// don't compute the gradient direction, just assign a rotation of 0 degree
theta = 0;
else
{
// get the gray values in the unrotated pattern
for (unsigned int i = 0; i < points_; i++)
*(pvalues++) = smoothedIntensity (image_data, width, height, integral, x, y, scale, 0, i);
direction0 = 0;
direction1 = 0;
// now iterate through the long pairings
const BriskLongPair* max = long_pairs_ + no_long_pairs_;
for (BriskLongPair* iter = long_pairs_; iter < max; ++iter)
{
t1 = *(values + iter->i);
t2 = *(values + iter->j);
const int delta_t = (t1 - t2);
// update the direction:
const int tmp0 = delta_t * (iter->weighted_dx) / 1024;
const int tmp1 = delta_t * (iter->weighted_dy) / 1024;
direction0 += tmp0;
direction1 += tmp1;
}
kp.angle = std::atan2 (float (direction1), float (direction0)) / float (M_PI) * 180.0f;
theta = static_cast<int> ((float (n_rot_) * kp.angle) / (360.0f) + 0.5f);
if (theta < 0)
theta += n_rot_;
if (theta >= int (n_rot_))
theta -= n_rot_;
}
}
else
{
// figure out the direction:
//int theta=rotationInvariance*round((_n_rot*std::atan2(direction.at<int>(0,0),direction.at<int>(1,0)))/(2*M_PI));
if (!rotation_invariance_enabled_)
theta = 0;
else
{
theta = static_cast<int> (n_rot_ * (kp.angle / (360.0)) + 0.5);
if (theta < 0)
theta += n_rot_;
if (theta >= int (n_rot_))
theta -= n_rot_;
}
}
// now also extract the stuff for the actual direction:
// let us compute the smoothed values
shifter = 0;
//unsigned int mean=0;
pvalues = values;
// get the gray values in the rotated pattern
for (unsigned int i = 0; i < points_; i++)
*(pvalues++) = smoothedIntensity (image_data, width, height, integral, x, y, scale, theta, i);
#ifdef __GNUC__
using UINT32_ALIAS = std::uint32_t;
#endif
#ifdef _MSC_VER
// Todo: find the equivalent to may_alias
#define UCHAR_ALIAS std::uint32_t //__declspec(noalias)
#define UINT32_ALIAS std::uint32_t //__declspec(noalias)
#endif
// now iterate through all the pairings
UINT32_ALIAS* ptr2 = reinterpret_cast<UINT32_ALIAS*> (ptr);
const BriskShortPair* max = short_pairs_ + no_short_pairs_;
for (BriskShortPair* iter = short_pairs_; iter < max; ++iter)
{
t1 = *(values + iter->i);
t2 = *(values + iter->j);
if (t1 > t2)
*ptr2 |= ((1) << shifter);
// else already initialized with zero
// take care of the iterators:
++shifter;
if (shifter == 32)
{
shifter = 0;
++ptr2;
}
}
//ptr += strings_;
//// Account for the scale + orientation;
//ptr += sizeof (output[0].scale);
//ptr += sizeof (output[0].orientation);
}
// we do not change the denseness
output.width = output.size ();
output.height = 1;
output.is_dense = true;
// clean-up
delete [] values;
}
} // namespace pcl
#endif //#ifndef PCL_FEATURES_IMPL_BRISK_2D_HPP_