203 lines
8.8 KiB
C++

/*
* Software License Agreement (BSD License)
*
* Point Cloud Library (PCL) - www.pointclouds.org
* Copyright (c) 2010-2012, Willow Garage, Inc.
* Copyright (c) 2012-, Open Perception, Inc.
*
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of the copyright holder(s) nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#pragma once
#include <pcl/common/eigen.h> // for computeRoots, eigen33
#include <pcl/common/vector_average.h>
#include <Eigen/Eigenvalues> // for SelfAdjointEigenSolver
namespace pcl
{
template <typename real, int dimension>
VectorAverage<real, dimension>::VectorAverage ()
{
reset();
}
template <typename real, int dimension>
inline void VectorAverage<real, dimension>::reset()
{
noOfSamples_ = 0;
accumulatedWeight_ = 0.0;
mean_.fill(0);
covariance_.fill(0);
}
template <typename real, int dimension>
inline void VectorAverage<real, dimension>::add(const Eigen::Matrix<real, dimension, 1>& sample, real weight) {
if (weight == 0.0f)
return;
++noOfSamples_;
accumulatedWeight_ += weight;
real alpha = weight/accumulatedWeight_;
Eigen::Matrix<real, dimension, 1> diff = sample - mean_;
covariance_ = (covariance_ + (diff * diff.transpose())*alpha)*(1.0f-alpha);
mean_ += (diff)*alpha;
//if (std::isnan(covariance_(0,0)))
//{
//std::cout << PVARN(weight);
//exit(0);
//}
}
template <typename real, int dimension>
inline void VectorAverage<real, dimension>::doPCA(Eigen::Matrix<real, dimension, 1>& eigen_values, Eigen::Matrix<real, dimension, 1>& eigen_vector1,
Eigen::Matrix<real, dimension, 1>& eigen_vector2, Eigen::Matrix<real, dimension, 1>& eigen_vector3) const
{
// The following step is necessary for cases where the values in the covariance matrix are small
// In this case float accuracy is nor enough to calculate the eigenvalues and eigenvectors.
//Eigen::Matrix<double, dimension, dimension> tmp_covariance = covariance_.template cast<double>();
//Eigen::SelfAdjointEigenSolver<Eigen::Matrix<double, dimension, dimension> > ei_symm(tmp_covariance);
//eigen_values = ei_symm.eigenvalues().template cast<real>();
//Eigen::Matrix<real, dimension, dimension> eigen_vectors = ei_symm.eigenvectors().template cast<real>();
//std::cout << "My covariance is \n"<<covariance_<<"\n";
//std::cout << "My mean is \n"<<mean_<<"\n";
//std::cout << "My Eigenvectors \n"<<eigen_vectors<<"\n";
Eigen::SelfAdjointEigenSolver<Eigen::Matrix<real, dimension, dimension> > ei_symm(covariance_);
eigen_values = ei_symm.eigenvalues();
Eigen::Matrix<real, dimension, dimension> eigen_vectors = ei_symm.eigenvectors();
eigen_vector1 = eigen_vectors.col(0);
eigen_vector2 = eigen_vectors.col(1);
eigen_vector3 = eigen_vectors.col(2);
}
template <typename real, int dimension>
inline void VectorAverage<real, dimension>::doPCA(Eigen::Matrix<real, dimension, 1>& eigen_values) const
{
// The following step is necessary for cases where the values in the covariance matrix are small
// In this case float accuracy is nor enough to calculate the eigenvalues and eigenvectors.
//Eigen::Matrix<double, dimension, dimension> tmp_covariance = covariance_.template cast<double>();
//Eigen::SelfAdjointEigenSolver<Eigen::Matrix<double, dimension, dimension> > ei_symm(tmp_covariance, false);
//eigen_values = ei_symm.eigenvalues().template cast<real>();
Eigen::SelfAdjointEigenSolver<Eigen::Matrix<real, dimension, dimension> > ei_symm(covariance_, false);
eigen_values = ei_symm.eigenvalues();
}
template <typename real, int dimension>
inline void VectorAverage<real, dimension>::getEigenVector1(Eigen::Matrix<real, dimension, 1>& eigen_vector1) const
{
// The following step is necessary for cases where the values in the covariance matrix are small
// In this case float accuracy is nor enough to calculate the eigenvalues and eigenvectors.
//Eigen::Matrix<double, dimension, dimension> tmp_covariance = covariance_.template cast<double>();
//Eigen::SelfAdjointEigenSolver<Eigen::Matrix<double, dimension, dimension> > ei_symm(tmp_covariance);
//eigen_values = ei_symm.eigenvalues().template cast<real>();
//Eigen::Matrix<real, dimension, dimension> eigen_vectors = ei_symm.eigenvectors().template cast<real>();
//std::cout << "My covariance is \n"<<covariance_<<"\n";
//std::cout << "My mean is \n"<<mean_<<"\n";
//std::cout << "My Eigenvectors \n"<<eigen_vectors<<"\n";
Eigen::SelfAdjointEigenSolver<Eigen::Matrix<real, dimension, dimension> > ei_symm(covariance_);
Eigen::Matrix<real, dimension, dimension> eigen_vectors = ei_symm.eigenvectors();
eigen_vector1 = eigen_vectors.col(0);
}
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
// Special cases for real=float & dimension=3 -> Partial specialization does not work with class templates. :( //
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////
///////////
// float //
///////////
template <>
inline void VectorAverage<float, 3>::doPCA(Eigen::Matrix<float, 3, 1>& eigen_values, Eigen::Matrix<float, 3, 1>& eigen_vector1,
Eigen::Matrix<float, 3, 1>& eigen_vector2, Eigen::Matrix<float, 3, 1>& eigen_vector3) const
{
//std::cout << "Using specialized 3x3 version of doPCA!\n";
Eigen::Matrix<float, 3, 3> eigen_vectors;
eigen33(covariance_, eigen_vectors, eigen_values);
eigen_vector1 = eigen_vectors.col(0);
eigen_vector2 = eigen_vectors.col(1);
eigen_vector3 = eigen_vectors.col(2);
}
template <>
inline void VectorAverage<float, 3>::doPCA(Eigen::Matrix<float, 3, 1>& eigen_values) const
{
//std::cout << "Using specialized 3x3 version of doPCA!\n";
computeRoots (covariance_, eigen_values);
}
template <>
inline void VectorAverage<float, 3>::getEigenVector1(Eigen::Matrix<float, 3, 1>& eigen_vector1) const
{
//std::cout << "Using specialized 3x3 version of doPCA!\n";
Eigen::Vector3f::Scalar eigen_value;
Eigen::Vector3f eigen_vector;
eigen33(covariance_, eigen_value, eigen_vector);
eigen_vector1 = eigen_vector;
}
////////////
// double //
////////////
template <>
inline void VectorAverage<double, 3>::doPCA(Eigen::Matrix<double, 3, 1>& eigen_values, Eigen::Matrix<double, 3, 1>& eigen_vector1,
Eigen::Matrix<double, 3, 1>& eigen_vector2, Eigen::Matrix<double, 3, 1>& eigen_vector3) const
{
//std::cout << "Using specialized 3x3 version of doPCA!\n";
Eigen::Matrix<double, 3, 3> eigen_vectors;
eigen33(covariance_, eigen_vectors, eigen_values);
eigen_vector1 = eigen_vectors.col(0);
eigen_vector2 = eigen_vectors.col(1);
eigen_vector3 = eigen_vectors.col(2);
}
template <>
inline void VectorAverage<double, 3>::doPCA(Eigen::Matrix<double, 3, 1>& eigen_values) const
{
//std::cout << "Using specialized 3x3 version of doPCA!\n";
computeRoots (covariance_, eigen_values);
}
template <>
inline void VectorAverage<double, 3>::getEigenVector1(Eigen::Matrix<double, 3, 1>& eigen_vector1) const
{
//std::cout << "Using specialized 3x3 version of doPCA!\n";
Eigen::Vector3d::Scalar eigen_value;
Eigen::Vector3d eigen_vector;
eigen33(covariance_, eigen_value, eigen_vector);
eigen_vector1 = eigen_vector;
}
} // namespace pcl