263 lines
12 KiB
C++
263 lines
12 KiB
C++
/*
|
|
* Software License Agreement (BSD License)
|
|
*
|
|
* Point Cloud Library (PCL) - www.pointclouds.org
|
|
* Copyright (c) 2010-2011, Willow Garage, Inc.
|
|
*
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* * Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* * Redistributions in binary form must reproduce the above
|
|
* copyright notice, this list of conditions and the following
|
|
* disclaimer in the documentation and/or other materials provided
|
|
* with the distribution.
|
|
* * Neither the name of the copyright holder(s) nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
|
|
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
|
|
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
|
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
|
|
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
* POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
* $Id$
|
|
*
|
|
*/
|
|
|
|
#pragma once
|
|
|
|
#include <pcl/point_cloud.h>
|
|
|
|
#include <Eigen/Core> // for VectorXf
|
|
|
|
#include <functional>
|
|
|
|
namespace pcl
|
|
{
|
|
/** Class GaussianKernel assembles all the method for computing,
|
|
* convolving, smoothing, gradients computing an image using
|
|
* a gaussian kernel. The image is stored in point cloud elements
|
|
* intensity member or rgb or...
|
|
* \author Nizar Sallem
|
|
* \ingroup common
|
|
*/
|
|
class PCL_EXPORTS GaussianKernel
|
|
{
|
|
public:
|
|
|
|
static const unsigned MAX_KERNEL_WIDTH = 71;
|
|
/** Computes the gaussian kernel and dervative assiociated to sigma.
|
|
* The kernel and derivative width are adjusted according.
|
|
* \param[in] sigma
|
|
* \param[out] kernel the computed gaussian kernel
|
|
* \param[in] kernel_width the desired kernel width upper bond
|
|
* \throws pcl::KernelWidthTooSmallException
|
|
*/
|
|
void
|
|
compute (float sigma,
|
|
Eigen::VectorXf &kernel,
|
|
unsigned kernel_width = MAX_KERNEL_WIDTH) const;
|
|
|
|
/** Computes the gaussian kernel and dervative assiociated to sigma.
|
|
* The kernel and derivative width are adjusted according.
|
|
* \param[in] sigma
|
|
* \param[out] kernel the computed gaussian kernel
|
|
* \param[out] derivative the computed kernel derivative
|
|
* \param[in] kernel_width the desired kernel width upper bond
|
|
* \throws pcl::KernelWidthTooSmallException
|
|
*/
|
|
void
|
|
compute (float sigma,
|
|
Eigen::VectorXf &kernel,
|
|
Eigen::VectorXf &derivative,
|
|
unsigned kernel_width = MAX_KERNEL_WIDTH) const;
|
|
|
|
/** Convolve a float image rows by a given kernel.
|
|
* \param[in] kernel convolution kernel
|
|
* \param[in] input the image to convolve
|
|
* \param[out] output the convolved image
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
void
|
|
convolveRows (const pcl::PointCloud<float> &input,
|
|
const Eigen::VectorXf &kernel,
|
|
pcl::PointCloud<float> &output) const;
|
|
|
|
/** Convolve a float image rows by a given kernel.
|
|
* \param[in] input the image to convolve
|
|
* \param[in] field_accessor a field accessor
|
|
* \param[in] kernel convolution kernel
|
|
* \param[out] output the convolved image
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
template <typename PointT> void
|
|
convolveRows (const pcl::PointCloud<PointT> &input,
|
|
std::function <float (const PointT& p)> field_accessor,
|
|
const Eigen::VectorXf &kernel,
|
|
pcl::PointCloud<float> &output) const;
|
|
|
|
/** Convolve a float image columns by a given kernel.
|
|
* \param[in] input the image to convolve
|
|
* \param[in] kernel convolution kernel
|
|
* \param[out] output the convolved image
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
void
|
|
convolveCols (const pcl::PointCloud<float> &input,
|
|
const Eigen::VectorXf &kernel,
|
|
pcl::PointCloud<float> &output) const;
|
|
|
|
/** Convolve a float image columns by a given kernel.
|
|
* \param[in] input the image to convolve
|
|
* \param[in] field_accessor a field accessor
|
|
* \param[in] kernel convolution kernel
|
|
* \param[out] output the convolved image
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
template <typename PointT> void
|
|
convolveCols (const pcl::PointCloud<PointT> &input,
|
|
std::function <float (const PointT& p)> field_accessor,
|
|
const Eigen::VectorXf &kernel,
|
|
pcl::PointCloud<float> &output) const;
|
|
|
|
/** Convolve a float image in the 2 directions
|
|
* \param[in] horiz_kernel kernel for convolving rows
|
|
* \param[in] vert_kernel kernel for convolving columns
|
|
* \param[in] input image to convolve
|
|
* \param[out] output the convolved image
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
inline void
|
|
convolve (const pcl::PointCloud<float> &input,
|
|
const Eigen::VectorXf &horiz_kernel,
|
|
const Eigen::VectorXf &vert_kernel,
|
|
pcl::PointCloud<float> &output) const
|
|
{
|
|
std::cout << ">>> convolve cpp" << std::endl;
|
|
pcl::PointCloud<float> tmp (input.width, input.height) ;
|
|
convolveRows (input, horiz_kernel, tmp);
|
|
convolveCols (tmp, vert_kernel, output);
|
|
std::cout << "<<< convolve cpp" << std::endl;
|
|
}
|
|
|
|
/** Convolve a float image in the 2 directions
|
|
* \param[in] input image to convolve
|
|
* \param[in] field_accessor a field accessor
|
|
* \param[in] horiz_kernel kernel for convolving rows
|
|
* \param[in] vert_kernel kernel for convolving columns
|
|
* \param[out] output the convolved image
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
template <typename PointT> inline void
|
|
convolve (const pcl::PointCloud<PointT> &input,
|
|
std::function <float (const PointT& p)> field_accessor,
|
|
const Eigen::VectorXf &horiz_kernel,
|
|
const Eigen::VectorXf &vert_kernel,
|
|
pcl::PointCloud<float> &output) const
|
|
{
|
|
std::cout << ">>> convolve hpp" << std::endl;
|
|
pcl::PointCloud<float> tmp (input.width, input.height);
|
|
convolveRows<PointT>(input, field_accessor, horiz_kernel, tmp);
|
|
convolveCols(tmp, vert_kernel, output);
|
|
std::cout << "<<< convolve hpp" << std::endl;
|
|
}
|
|
|
|
/** Computes float image gradients using a gaussian kernel and gaussian kernel
|
|
* derivative.
|
|
* \param[in] input image to compute gardients for
|
|
* \param[in] gaussian_kernel the gaussian kernel to be used
|
|
* \param[in] gaussian_kernel_derivative the associated derivative
|
|
* \param[out] grad_x gradient along X direction
|
|
* \param[out] grad_y gradient along Y direction
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
inline void
|
|
computeGradients (const pcl::PointCloud<float> &input,
|
|
const Eigen::VectorXf &gaussian_kernel,
|
|
const Eigen::VectorXf &gaussian_kernel_derivative,
|
|
pcl::PointCloud<float> &grad_x,
|
|
pcl::PointCloud<float> &grad_y) const
|
|
{
|
|
convolve (input, gaussian_kernel_derivative, gaussian_kernel, grad_x);
|
|
convolve (input, gaussian_kernel, gaussian_kernel_derivative, grad_y);
|
|
}
|
|
|
|
/** Computes float image gradients using a gaussian kernel and gaussian kernel
|
|
* derivative.
|
|
* \param[in] input image to compute gardients for
|
|
* \param[in] field_accessor a field accessor
|
|
* \param[in] gaussian_kernel the gaussian kernel to be used
|
|
* \param[in] gaussian_kernel_derivative the associated derivative
|
|
* \param[out] grad_x gradient along X direction
|
|
* \param[out] grad_y gradient along Y direction
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
template <typename PointT> inline void
|
|
computeGradients (const pcl::PointCloud<PointT> &input,
|
|
std::function <float (const PointT& p)> field_accessor,
|
|
const Eigen::VectorXf &gaussian_kernel,
|
|
const Eigen::VectorXf &gaussian_kernel_derivative,
|
|
pcl::PointCloud<float> &grad_x,
|
|
pcl::PointCloud<float> &grad_y) const
|
|
{
|
|
convolve<PointT> (input, field_accessor, gaussian_kernel_derivative, gaussian_kernel, grad_x);
|
|
convolve<PointT> (input, field_accessor, gaussian_kernel, gaussian_kernel_derivative, grad_y);
|
|
}
|
|
|
|
/** Smooth image using a gaussian kernel.
|
|
* \param[in] input image
|
|
* \param[in] gaussian_kernel the gaussian kernel to be used
|
|
* \param[out] output the smoothed image
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
inline void
|
|
smooth (const pcl::PointCloud<float> &input,
|
|
const Eigen::VectorXf &gaussian_kernel,
|
|
pcl::PointCloud<float> &output) const
|
|
{
|
|
convolve (input, gaussian_kernel, gaussian_kernel, output);
|
|
}
|
|
|
|
/** Smooth image using a gaussian kernel.
|
|
* \param[in] input image
|
|
* \param[in] field_accessor a field accessor
|
|
* \param[in] gaussian_kernel the gaussian kernel to be used
|
|
* \param[out] output the smoothed image
|
|
* \note if output doesn't fit in input i.e. output.rows () < input.rows () or
|
|
* output.cols () < input.cols () then output is resized to input sizes.
|
|
*/
|
|
template <typename PointT> inline void
|
|
smooth (const pcl::PointCloud<PointT> &input,
|
|
std::function <float (const PointT& p)> field_accessor,
|
|
const Eigen::VectorXf &gaussian_kernel,
|
|
pcl::PointCloud<float> &output) const
|
|
{
|
|
convolve<PointT> (input, field_accessor, gaussian_kernel, gaussian_kernel, output);
|
|
}
|
|
};
|
|
}
|
|
|
|
#include <pcl/common/impl/gaussian.hpp>
|