/* * Software License Agreement (BSD License) * * Copyright (c) 2011, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $id $ */ #ifndef PCL_SEGMENTATION_IMPL_EXTRACT_LABELED_CLUSTERS_H_ #define PCL_SEGMENTATION_IMPL_EXTRACT_LABELED_CLUSTERS_H_ #include ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::extractLabeledEuclideanClusters( const PointCloud& cloud, const typename search::Search::Ptr& tree, float tolerance, std::vector>& labeled_clusters, unsigned int min_pts_per_cluster, unsigned int max_pts_per_cluster, unsigned int) { pcl::extractLabeledEuclideanClusters(cloud, tree, tolerance, labeled_clusters, min_pts_per_cluster, max_pts_per_cluster); } template void pcl::extractLabeledEuclideanClusters( const PointCloud& cloud, const typename search::Search::Ptr& tree, float tolerance, std::vector>& labeled_clusters, unsigned int min_pts_per_cluster, unsigned int max_pts_per_cluster) { if (tree->getInputCloud()->size() != cloud.size()) { PCL_ERROR("[pcl::extractLabeledEuclideanClusters] Tree built for a different point " "cloud dataset (%lu) than the input cloud (%lu)!\n", tree->getInputCloud()->size(), cloud.size()); return; } // Create a bool vector of processed point indices, and initialize it to false std::vector processed(cloud.size(), false); Indices nn_indices; std::vector nn_distances; // Process all points in the indices vector for (index_t i = 0; i < static_cast(cloud.size()); ++i) { if (processed[i]) continue; Indices seed_queue; int sq_idx = 0; seed_queue.push_back(i); processed[i] = true; while (sq_idx < static_cast(seed_queue.size())) { // Search for sq_idx int ret = tree->radiusSearch(seed_queue[sq_idx], tolerance, nn_indices, nn_distances, std::numeric_limits::max()); if (ret == -1) PCL_ERROR("radiusSearch on tree came back with error -1"); if (!ret) { sq_idx++; continue; } for (std::size_t j = 1; j < nn_indices.size(); ++j) // nn_indices[0] should be sq_idx { if (processed[nn_indices[j]]) // Has this point been processed before ? continue; if (cloud[i].label == cloud[nn_indices[j]].label) { // Perform a simple Euclidean clustering seed_queue.push_back(nn_indices[j]); processed[nn_indices[j]] = true; } } sq_idx++; } // If this queue is satisfactory, add to the clusters if (seed_queue.size() >= min_pts_per_cluster && seed_queue.size() <= max_pts_per_cluster) { pcl::PointIndices r; r.indices.resize(seed_queue.size()); for (std::size_t j = 0; j < seed_queue.size(); ++j) r.indices[j] = seed_queue[j]; std::sort(r.indices.begin(), r.indices.end()); r.indices.erase(std::unique(r.indices.begin(), r.indices.end()), r.indices.end()); r.header = cloud.header; labeled_clusters[cloud[i].label].push_back( r); // We could avoid a copy by working directly in the vector } } } ////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::LabeledEuclideanClusterExtraction::extract( std::vector>& labeled_clusters) { if (!initCompute() || (input_ && input_->empty()) || (indices_ && indices_->empty())) { labeled_clusters.clear(); return; } // Initialize the spatial locator if (!tree_) { if (input_->isOrganized()) tree_.reset(new pcl::search::OrganizedNeighbor()); else tree_.reset(new pcl::search::KdTree(false)); } // Send the input dataset to the spatial locator tree_->setInputCloud(input_); extractLabeledEuclideanClusters(*input_, tree_, static_cast(cluster_tolerance_), labeled_clusters, min_pts_per_cluster_, max_pts_per_cluster_); // Sort the clusters based on their size (largest one first) for (auto& labeled_cluster : labeled_clusters) std::sort(labeled_cluster.rbegin(), labeled_cluster.rend(), comparePointClusters); deinitCompute(); } #define PCL_INSTANTIATE_LabeledEuclideanClusterExtraction(T) \ template class PCL_EXPORTS pcl::LabeledEuclideanClusterExtraction; #define PCL_INSTANTIATE_extractLabeledEuclideanClusters_deprecated(T) \ template void PCL_EXPORTS pcl::extractLabeledEuclideanClusters( \ const pcl::PointCloud&, \ const typename pcl::search::Search::Ptr&, \ float, \ std::vector>&, \ unsigned int, \ unsigned int, \ unsigned int); #define PCL_INSTANTIATE_extractLabeledEuclideanClusters(T) \ template void PCL_EXPORTS pcl::extractLabeledEuclideanClusters( \ const pcl::PointCloud&, \ const typename pcl::search::Search::Ptr&, \ float, \ std::vector>&, \ unsigned int, \ unsigned int); #endif // PCL_EXTRACT_CLUSTERS_IMPL_H_