/* * Software License Agreement (BSD License) * * Copyright (c) 2009, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #ifndef PCL_SEGMENTATION_IMPL_EXTRACT_CLUSTERS_H_ #define PCL_SEGMENTATION_IMPL_EXTRACT_CLUSTERS_H_ #include #include // for OrganizedNeighbor ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::extractEuclideanClusters (const PointCloud &cloud, const typename search::Search::Ptr &tree, float tolerance, std::vector &clusters, unsigned int min_pts_per_cluster, unsigned int max_pts_per_cluster) { if (tree->getInputCloud ()->size () != cloud.size ()) { PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different point cloud " "dataset (%zu) than the input cloud (%zu)!\n", static_cast(tree->getInputCloud()->size()), static_cast(cloud.size())); return; } // Check if the tree is sorted -- if it is we don't need to check the first element int nn_start_idx = tree->getSortedResults () ? 1 : 0; // Create a bool vector of processed point indices, and initialize it to false std::vector processed (cloud.size (), false); Indices nn_indices; std::vector nn_distances; // Process all points in the indices vector for (int i = 0; i < static_cast (cloud.size ()); ++i) { if (processed[i]) continue; Indices seed_queue; int sq_idx = 0; seed_queue.push_back (i); processed[i] = true; while (sq_idx < static_cast (seed_queue.size ())) { // Search for sq_idx if (!tree->radiusSearch (seed_queue[sq_idx], tolerance, nn_indices, nn_distances)) { sq_idx++; continue; } for (std::size_t j = nn_start_idx; j < nn_indices.size (); ++j) // can't assume sorted (default isn't!) { if (nn_indices[j] == UNAVAILABLE || processed[nn_indices[j]]) // Has this point been processed before ? continue; // Perform a simple Euclidean clustering seed_queue.push_back (nn_indices[j]); processed[nn_indices[j]] = true; } sq_idx++; } // If this queue is satisfactory, add to the clusters if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster) { pcl::PointIndices r; r.indices.resize (seed_queue.size ()); for (std::size_t j = 0; j < seed_queue.size (); ++j) r.indices[j] = seed_queue[j]; // These two lines should not be needed: (can anyone confirm?) -FF std::sort (r.indices.begin (), r.indices.end ()); r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ()); r.header = cloud.header; clusters.push_back (r); // We could avoid a copy by working directly in the vector } else { PCL_DEBUG("[pcl::extractEuclideanClusters] This cluster has %zu points, which is not between %u and %u points, so it is not a final cluster\n", seed_queue.size (), min_pts_per_cluster, max_pts_per_cluster); } } } ////////////////////////////////////////////////////////////////////////////////////////////// /** @todo: fix the return value, make sure the exit is not needed anymore*/ template void pcl::extractEuclideanClusters (const PointCloud &cloud, const Indices &indices, const typename search::Search::Ptr &tree, float tolerance, std::vector &clusters, unsigned int min_pts_per_cluster, unsigned int max_pts_per_cluster) { // \note If the tree was created over , we guarantee a 1-1 mapping between what the tree returns //and indices[i] if (tree->getInputCloud()->size() != cloud.size()) { PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different point cloud " "dataset (%zu) than the input cloud (%zu)!\n", static_cast(tree->getInputCloud()->size()), static_cast(cloud.size())); return; } if (tree->getIndices()->size() != indices.size()) { PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different set of " "indices (%zu) than the input set (%zu)!\n", static_cast(tree->getIndices()->size()), indices.size()); return; } // Check if the tree is sorted -- if it is we don't need to check the first element int nn_start_idx = tree->getSortedResults () ? 1 : 0; // Create a bool vector of processed point indices, and initialize it to false std::vector processed (cloud.size (), false); Indices nn_indices; std::vector nn_distances; // Process all points in the indices vector for (const auto &index : indices) { if (processed[index]) continue; Indices seed_queue; int sq_idx = 0; seed_queue.push_back (index); processed[index] = true; while (sq_idx < static_cast (seed_queue.size ())) { // Search for sq_idx int ret = tree->radiusSearch (cloud[seed_queue[sq_idx]], tolerance, nn_indices, nn_distances); if( ret == -1) { PCL_ERROR("[pcl::extractEuclideanClusters] Received error code -1 from radiusSearch\n"); exit(0); } if (!ret) { sq_idx++; continue; } for (std::size_t j = nn_start_idx; j < nn_indices.size (); ++j) // can't assume sorted (default isn't!) { if (nn_indices[j] == UNAVAILABLE || processed[nn_indices[j]]) // Has this point been processed before ? continue; // Perform a simple Euclidean clustering seed_queue.push_back (nn_indices[j]); processed[nn_indices[j]] = true; } sq_idx++; } // If this queue is satisfactory, add to the clusters if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster) { pcl::PointIndices r; r.indices.resize (seed_queue.size ()); for (std::size_t j = 0; j < seed_queue.size (); ++j) // This is the only place where indices come into play r.indices[j] = seed_queue[j]; // These two lines should not be needed: (can anyone confirm?) -FF //r.indices.assign(seed_queue.begin(), seed_queue.end()); std::sort (r.indices.begin (), r.indices.end ()); r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ()); r.header = cloud.header; clusters.push_back (r); // We could avoid a copy by working directly in the vector } else { PCL_DEBUG("[pcl::extractEuclideanClusters] This cluster has %zu points, which is not between %u and %u points, so it is not a final cluster\n", seed_queue.size (), min_pts_per_cluster, max_pts_per_cluster); } } } ////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::EuclideanClusterExtraction::extract (std::vector &clusters) { if (!initCompute () || (input_ && input_->points.empty ()) || (indices_ && indices_->empty ())) { clusters.clear (); return; } // Initialize the spatial locator if (!tree_) { if (input_->isOrganized ()) tree_.reset (new pcl::search::OrganizedNeighbor ()); else tree_.reset (new pcl::search::KdTree (false)); } // Send the input dataset to the spatial locator tree_->setInputCloud (input_, indices_); extractEuclideanClusters (*input_, *indices_, tree_, static_cast (cluster_tolerance_), clusters, min_pts_per_cluster_, max_pts_per_cluster_); //tree_->setInputCloud (input_); //extractEuclideanClusters (*input_, tree_, cluster_tolerance_, clusters, min_pts_per_cluster_, max_pts_per_cluster_); // Sort the clusters based on their size (largest one first) std::sort (clusters.rbegin (), clusters.rend (), comparePointClusters); deinitCompute (); } #define PCL_INSTANTIATE_EuclideanClusterExtraction(T) template class PCL_EXPORTS pcl::EuclideanClusterExtraction; #define PCL_INSTANTIATE_extractEuclideanClusters(T) template void PCL_EXPORTS pcl::extractEuclideanClusters(const pcl::PointCloud &, const typename pcl::search::Search::Ptr &, float , std::vector &, unsigned int, unsigned int); #define PCL_INSTANTIATE_extractEuclideanClusters_indices(T) template void PCL_EXPORTS pcl::extractEuclideanClusters(const pcl::PointCloud &, const pcl::Indices &, const typename pcl::search::Search::Ptr &, float , std::vector &, unsigned int, unsigned int); #endif // PCL_EXTRACT_CLUSTERS_IMPL_H_