/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #pragma once #include #include #include #include #include #include #include #include #include // for std::iota namespace pcl { /** \brief SampleConsensusModelRegistration defines a model for Point-To-Point registration outlier rejection. * \author Radu Bogdan Rusu * \ingroup sample_consensus */ template class SampleConsensusModelRegistration : public SampleConsensusModel { public: using SampleConsensusModel::model_name_; using SampleConsensusModel::input_; using SampleConsensusModel::indices_; using SampleConsensusModel::error_sqr_dists_; using SampleConsensusModel::isModelValid; using PointCloud = typename SampleConsensusModel::PointCloud; using PointCloudPtr = typename SampleConsensusModel::PointCloudPtr; using PointCloudConstPtr = typename SampleConsensusModel::PointCloudConstPtr; using Ptr = shared_ptr >; using ConstPtr = shared_ptr>; /** \brief Constructor for base SampleConsensusModelRegistration. * \param[in] cloud the input point cloud dataset * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) */ SampleConsensusModelRegistration (const PointCloudConstPtr &cloud, bool random = false) : SampleConsensusModel (cloud, random) , target_ () , sample_dist_thresh_ (0) { // Call our own setInputCloud setInputCloud (cloud); model_name_ = "SampleConsensusModelRegistration"; sample_size_ = 3; model_size_ = 16; } /** \brief Constructor for base SampleConsensusModelRegistration. * \param[in] cloud the input point cloud dataset * \param[in] indices a vector of point indices to be used from \a cloud * \param[in] random if true set the random seed to the current time, else set to 12345 (default: false) */ SampleConsensusModelRegistration (const PointCloudConstPtr &cloud, const Indices &indices, bool random = false) : SampleConsensusModel (cloud, indices, random) , target_ () , sample_dist_thresh_ (0) { computeOriginalIndexMapping (); computeSampleDistanceThreshold (cloud, indices); model_name_ = "SampleConsensusModelRegistration"; sample_size_ = 3; model_size_ = 16; } /** \brief Empty destructor */ ~SampleConsensusModelRegistration () {} /** \brief Provide a pointer to the input dataset * \param[in] cloud the const boost shared pointer to a PointCloud message */ inline void setInputCloud (const PointCloudConstPtr &cloud) override { SampleConsensusModel::setInputCloud (cloud); computeOriginalIndexMapping (); computeSampleDistanceThreshold (cloud); } /** \brief Set the input point cloud target. * \param[in] target the input point cloud target */ inline void setInputTarget (const PointCloudConstPtr &target) { target_ = target; // Cache the size and fill the target indices const index_t target_size = static_cast (target->size ()); indices_tgt_.reset (new Indices (target_size)); std::iota (indices_tgt_->begin (), indices_tgt_->end (), 0); computeOriginalIndexMapping (); } /** \brief Set the input point cloud target. * \param[in] target the input point cloud target * \param[in] indices_tgt a vector of point indices to be used from \a target */ inline void setInputTarget (const PointCloudConstPtr &target, const Indices &indices_tgt) { target_ = target; indices_tgt_.reset (new Indices (indices_tgt)); computeOriginalIndexMapping (); } /** \brief Compute a 4x4 rigid transformation matrix from the samples given * \param[in] samples the indices found as good candidates for creating a valid model * \param[out] model_coefficients the resultant model coefficients */ bool computeModelCoefficients (const Indices &samples, Eigen::VectorXf &model_coefficients) const override; /** \brief Compute all distances from the transformed points to their correspondences * \param[in] model_coefficients the 4x4 transformation matrix * \param[out] distances the resultant estimated distances */ void getDistancesToModel (const Eigen::VectorXf &model_coefficients, std::vector &distances) const override; /** \brief Select all the points which respect the given model coefficients as inliers. * \param[in] model_coefficients the 4x4 transformation matrix * \param[in] threshold a maximum admissible distance threshold for determining the inliers from the outliers * \param[out] inliers the resultant model inliers */ void selectWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold, Indices &inliers) override; /** \brief Count all the points which respect the given model coefficients as inliers. * * \param[in] model_coefficients the coefficients of a model that we need to compute distances to * \param[in] threshold maximum admissible distance threshold for determining the inliers from the outliers * \return the resultant number of inliers */ std::size_t countWithinDistance (const Eigen::VectorXf &model_coefficients, const double threshold) const override; /** \brief Recompute the 4x4 transformation using the given inlier set * \param[in] inliers the data inliers found as supporting the model * \param[in] model_coefficients the initial guess for the optimization * \param[out] optimized_coefficients the resultant recomputed transformation */ void optimizeModelCoefficients (const Indices &inliers, const Eigen::VectorXf &model_coefficients, Eigen::VectorXf &optimized_coefficients) const override; void projectPoints (const Indices &, const Eigen::VectorXf &, PointCloud &, bool = true) const override { }; bool doSamplesVerifyModel (const std::set &, const Eigen::VectorXf &, const double) const override { return (false); } /** \brief Return a unique id for this model (SACMODEL_REGISTRATION). */ inline pcl::SacModel getModelType () const override { return (SACMODEL_REGISTRATION); } protected: using SampleConsensusModel::sample_size_; using SampleConsensusModel::model_size_; /** \brief Check if a sample of indices results in a good sample of points * indices. * \param[in] samples the resultant index samples */ bool isSampleGood (const Indices &samples) const override; /** \brief Computes an "optimal" sample distance threshold based on the * principal directions of the input cloud. * \param[in] cloud the const boost shared pointer to a PointCloud message */ inline void computeSampleDistanceThreshold (const PointCloudConstPtr &cloud) { // Compute the principal directions via PCA Eigen::Vector4f xyz_centroid; Eigen::Matrix3f covariance_matrix = Eigen::Matrix3f::Zero (); computeMeanAndCovarianceMatrix (*cloud, covariance_matrix, xyz_centroid); // Check if the covariance matrix is finite or not. for (int i = 0; i < 3; ++i) for (int j = 0; j < 3; ++j) if (!std::isfinite (covariance_matrix.coeffRef (i, j))) PCL_ERROR ("[pcl::SampleConsensusModelRegistration::computeSampleDistanceThreshold] Covariance matrix has NaN values! Is the input cloud finite?\n"); Eigen::Vector3f eigen_values; pcl::eigen33 (covariance_matrix, eigen_values); // Compute the distance threshold for sample selection sample_dist_thresh_ = eigen_values.array ().sqrt ().sum () / 3.0; sample_dist_thresh_ *= sample_dist_thresh_; PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample selection distance threshold of: %f\n", sample_dist_thresh_); } /** \brief Computes an "optimal" sample distance threshold based on the * principal directions of the input cloud. * \param[in] cloud the const boost shared pointer to a PointCloud message * \param indices */ inline void computeSampleDistanceThreshold (const PointCloudConstPtr &cloud, const Indices &indices) { // Compute the principal directions via PCA Eigen::Vector4f xyz_centroid; Eigen::Matrix3f covariance_matrix; computeMeanAndCovarianceMatrix (*cloud, indices, covariance_matrix, xyz_centroid); // Check if the covariance matrix is finite or not. for (int i = 0; i < 3; ++i) for (int j = 0; j < 3; ++j) if (!std::isfinite (covariance_matrix.coeffRef (i, j))) PCL_ERROR ("[pcl::SampleConsensusModelRegistration::computeSampleDistanceThreshold] Covariance matrix has NaN values! Is the input cloud finite?\n"); Eigen::Vector3f eigen_values; pcl::eigen33 (covariance_matrix, eigen_values); // Compute the distance threshold for sample selection sample_dist_thresh_ = eigen_values.array ().sqrt ().sum () / 3.0; sample_dist_thresh_ *= sample_dist_thresh_; PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::setInputCloud] Estimated a sample selection distance threshold of: %f\n", sample_dist_thresh_); } /** \brief Estimate a rigid transformation between a source and a target point cloud using an SVD closed-form * solution of absolute orientation using unit quaternions * \param[in] cloud_src the source point cloud dataset * \param[in] indices_src the vector of indices describing the points of interest in cloud_src * \param[in] cloud_tgt the target point cloud dataset * \param[in] indices_tgt the vector of indices describing the correspondences of the interest points from * indices_src * \param[out] transform the resultant transformation matrix (as model coefficients) * * This method is an implementation of: Horn, B. “Closed-Form Solution of Absolute Orientation Using Unit Quaternions,” JOSA A, Vol. 4, No. 4, 1987 */ void estimateRigidTransformationSVD (const pcl::PointCloud &cloud_src, const Indices &indices_src, const pcl::PointCloud &cloud_tgt, const Indices &indices_tgt, Eigen::VectorXf &transform) const; /** \brief Compute mappings between original indices of the input_/target_ clouds. */ void computeOriginalIndexMapping () { if (!indices_tgt_) { PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_tgt_ is null.\n"); return; } if (!indices_) { PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_ is null.\n"); return; } if (indices_->empty ()) { PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_ is empty.\n"); return; } if (indices_->size () != indices_tgt_->size ()) { PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Cannot compute mapping: indices_ and indices_tgt_ are not the same size (%zu vs %zu).\n", indices_->size (), indices_tgt_->size ()); return; } for (std::size_t i = 0; i < indices_->size (); ++i) correspondences_[(*indices_)[i]] = (*indices_tgt_)[i]; PCL_DEBUG ("[pcl::SampleConsensusModelRegistration::computeOriginalIndexMapping] Successfully computed mapping.\n"); } /** \brief A boost shared pointer to the target point cloud data array. */ PointCloudConstPtr target_; /** \brief A pointer to the vector of target point indices to use. */ IndicesPtr indices_tgt_; /** \brief Given the index in the original point cloud, give the matching original index in the target cloud */ std::map correspondences_; /** \brief Internal distance threshold used for the sample selection step. */ double sample_dist_thresh_; public: PCL_MAKE_ALIGNED_OPERATOR_NEW }; } #include