/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2009, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #ifndef PCL_SAMPLE_CONSENSUS_IMPL_PROSAC_H_ #define PCL_SAMPLE_CONSENSUS_IMPL_PROSAC_H_ #if defined __GNUC__ # pragma GCC system_header #endif #include #include ////////////////////////////////////////////////////////////////////////// // Variable naming uses capital letters to make the comparison with the original paper easier template bool pcl::ProgressiveSampleConsensus::computeModel (int debug_verbosity_level) { // Warn and exit if no threshold was set if (threshold_ == DBL_MAX) { PCL_ERROR ("[pcl::ProgressiveSampleConsensus::computeModel] No threshold set!\n"); return (false); } // Initialize some PROSAC constants const int T_N = 200000; const std::size_t N = sac_model_->indices_->size (); const std::size_t m = sac_model_->getSampleSize (); float T_n = static_cast (T_N); for (unsigned int i = 0; i < m; ++i) T_n *= static_cast (m - i) / static_cast (N - i); float T_prime_n = 1.0f; std::size_t I_N_best = 0; float n = static_cast (m); // Define the n_Start coefficients from Section 2.2 float n_star = static_cast (N); float epsilon_n_star = 0.0; std::size_t k_n_star = T_N; // Compute the I_n_star_min of Equation 8 std::vector I_n_star_min (N); // Initialize the usual RANSAC parameters iterations_ = 0; Indices inliers; Indices selection; Eigen::VectorXf model_coefficients (sac_model_->getModelSize ()); // We will increase the pool so the indices_ vector can only contain m elements at first Indices index_pool; index_pool.reserve (N); for (unsigned int i = 0; i < n; ++i) index_pool.push_back (sac_model_->indices_->operator[](i)); // Iterate while (static_cast (iterations_) < k_n_star) { // Choose the samples // Step 1 // According to Equation 5 in the text text, not the algorithm if ((iterations_ == T_prime_n) && (n < n_star)) { // Increase the pool ++n; if (n >= N) break; index_pool.push_back (sac_model_->indices_->at(static_cast (n - 1))); // Update other variables float T_n_minus_1 = T_n; T_n *= (static_cast(n) + 1.0f) / (static_cast(n) + 1.0f - static_cast(m)); T_prime_n += std::ceil (T_n - T_n_minus_1); } // Step 2 sac_model_->indices_->swap (index_pool); selection.clear (); sac_model_->getSamples (iterations_, selection); if (T_prime_n < iterations_) { selection.pop_back (); selection.push_back (sac_model_->indices_->at(static_cast (n - 1))); } // Make sure we use the right indices for testing sac_model_->indices_->swap (index_pool); if (selection.empty ()) { PCL_ERROR ("[pcl::ProgressiveSampleConsensus::computeModel] No samples could be selected!\n"); break; } // Search for inliers in the point cloud for the current model if (!sac_model_->computeModelCoefficients (selection, model_coefficients)) { ++iterations_; continue; } // Select the inliers that are within threshold_ from the model inliers.clear (); sac_model_->selectWithinDistance (model_coefficients, threshold_, inliers); std::size_t I_N = inliers.size (); // If we find more inliers than before if (I_N > I_N_best) { I_N_best = I_N; // Save the current model/inlier/coefficients selection as being the best so far inliers_ = inliers; model_ = selection; model_coefficients_ = model_coefficients; // We estimate I_n_star for different possible values of n_star by using the inliers std::sort (inliers.begin (), inliers.end ()); // Try to find a better n_star // We minimize k_n_star and therefore maximize epsilon_n_star = I_n_star / n_star std::size_t possible_n_star_best = N, I_possible_n_star_best = I_N; float epsilon_possible_n_star_best = static_cast(I_possible_n_star_best) / static_cast(possible_n_star_best); // We only need to compute possible better epsilon_n_star for when _n is just about to be removed an inlier std::size_t I_possible_n_star = I_N; for (auto last_inlier = inliers.crbegin (), inliers_end = inliers.crend (); last_inlier != inliers_end; ++last_inlier, --I_possible_n_star) { // The best possible_n_star for a given I_possible_n_star is the index of the last inlier unsigned int possible_n_star = (*last_inlier) + 1; if (possible_n_star <= m) break; // If we find a better epsilon_n_star float epsilon_possible_n_star = static_cast(I_possible_n_star) / static_cast(possible_n_star); // Make sure we have a better epsilon_possible_n_star if ((epsilon_possible_n_star > epsilon_n_star) && (epsilon_possible_n_star > epsilon_possible_n_star_best)) { // Typo in Equation 7, not (n-m choose i-m) but (n choose i-m) std::size_t I_possible_n_star_min = m + static_cast (std::ceil (boost::math::quantile (boost::math::complement (boost::math::binomial_distribution(static_cast (possible_n_star), 0.1f), 0.05)))); // If Equation 9 is not verified, exit if (I_possible_n_star < I_possible_n_star_min) break; possible_n_star_best = possible_n_star; I_possible_n_star_best = I_possible_n_star; epsilon_possible_n_star_best = epsilon_possible_n_star; } } // Check if we get a better epsilon if (epsilon_possible_n_star_best > epsilon_n_star) { // update the best value epsilon_n_star = epsilon_possible_n_star_best; // Compute the new k_n_star float bottom_log = 1 - std::pow (epsilon_n_star, static_cast(m)); if (bottom_log == 0) k_n_star = 1; else if (bottom_log == 1) k_n_star = T_N; else k_n_star = static_cast (std::ceil (std::log (0.05) / std::log (bottom_log))); // It seems weird to have very few iterations, so do have a few (totally empirical) k_n_star = (std::max)(k_n_star, 2 * m); } } ++iterations_; if (debug_verbosity_level > 1) PCL_DEBUG ("[pcl::ProgressiveSampleConsensus::computeModel] Trial %d out of %d: %d inliers (best is: %d so far).\n", iterations_, k_n_star, I_N, I_N_best); if (iterations_ > max_iterations_) { if (debug_verbosity_level > 0) PCL_DEBUG ("[pcl::ProgressiveSampleConsensus::computeModel] RANSAC reached the maximum number of trials.\n"); break; } } if (debug_verbosity_level > 0) PCL_DEBUG ("[pcl::ProgressiveSampleConsensus::computeModel] Model: %lu size, %d inliers.\n", model_.size (), I_N_best); if (model_.empty ()) { inliers_.clear (); return (false); } return (true); } #define PCL_INSTANTIATE_ProgressiveSampleConsensus(T) template class PCL_EXPORTS pcl::ProgressiveSampleConsensus; #endif // PCL_SAMPLE_CONSENSUS_IMPL_PROSAC_H_