/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2009, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #ifndef PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_ #define PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_ #include ////////////////////////////////////////////////////////////////////////// template bool pcl::MEstimatorSampleConsensus::computeModel (int debug_verbosity_level) { // Warn and exit if no threshold was set if (threshold_ == std::numeric_limits::max()) { PCL_ERROR ("[pcl::MEstimatorSampleConsensus::computeModel] No threshold set!\n"); return (false); } iterations_ = 0; double d_best_penalty = std::numeric_limits::max(); double k = 1.0; Indices selection; Eigen::VectorXf model_coefficients (sac_model_->getModelSize ()); std::vector distances; int n_inliers_count = 0; unsigned skipped_count = 0; // suppress infinite loops by just allowing 10 x maximum allowed iterations for invalid model parameters! const unsigned max_skip = max_iterations_ * 10; // Iterate while (iterations_ < k && skipped_count < max_skip) { // Get X samples which satisfy the model criteria sac_model_->getSamples (iterations_, selection); if (selection.empty ()) break; // Search for inliers in the point cloud for the current plane model M if (!sac_model_->computeModelCoefficients (selection, model_coefficients)) { //iterations_++; ++ skipped_count; continue; } double d_cur_penalty = 0; // Iterate through the 3d points and calculate the distances from them to the model sac_model_->getDistancesToModel (model_coefficients, distances); if (distances.empty () && k > 1.0) continue; for (const double &distance : distances) d_cur_penalty += (std::min) (distance, threshold_); // Better match ? if (d_cur_penalty < d_best_penalty) { d_best_penalty = d_cur_penalty; // Save the current model/coefficients selection as being the best so far model_ = selection; model_coefficients_ = model_coefficients; n_inliers_count = 0; // Need to compute the number of inliers for this model to adapt k for (const double &distance : distances) if (distance <= threshold_) ++n_inliers_count; // Compute the k parameter (k=std::log(z)/std::log(1-w^n)) double w = static_cast (n_inliers_count) / static_cast (sac_model_->getIndices ()->size ()); double p_no_outliers = 1.0 - std::pow (w, static_cast (selection.size ())); p_no_outliers = (std::max) (std::numeric_limits::epsilon (), p_no_outliers); // Avoid division by -Inf p_no_outliers = (std::min) (1.0 - std::numeric_limits::epsilon (), p_no_outliers); // Avoid division by 0. k = std::log (1.0 - probability_) / std::log (p_no_outliers); } ++iterations_; if (debug_verbosity_level > 1) PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Trial %d out of %d. Best penalty is %f.\n", iterations_, static_cast (std::ceil (k)), d_best_penalty); if (iterations_ > max_iterations_) { if (debug_verbosity_level > 0) PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] MSAC reached the maximum number of trials.\n"); break; } } if (model_.empty ()) { if (debug_verbosity_level > 0) PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Unable to find a solution!\n"); return (false); } // Iterate through the 3d points and calculate the distances from them to the model again sac_model_->getDistancesToModel (model_coefficients_, distances); Indices &indices = *sac_model_->getIndices (); if (distances.size () != indices.size ()) { PCL_ERROR ("[pcl::MEstimatorSampleConsensus::computeModel] Estimated distances (%lu) differs than the normal of indices (%lu).\n", distances.size (), indices.size ()); return (false); } inliers_.resize (distances.size ()); // Get the inliers for the best model found n_inliers_count = 0; for (std::size_t i = 0; i < distances.size (); ++i) if (distances[i] <= threshold_) inliers_[n_inliers_count++] = indices[i]; // Resize the inliers vector inliers_.resize (n_inliers_count); if (debug_verbosity_level > 0) PCL_DEBUG ("[pcl::MEstimatorSampleConsensus::computeModel] Model: %lu size, %d inliers.\n", model_.size (), n_inliers_count); return (true); } #define PCL_INSTANTIATE_MEstimatorSampleConsensus(T) template class PCL_EXPORTS pcl::MEstimatorSampleConsensus; #endif // PCL_SAMPLE_CONSENSUS_IMPL_MSAC_H_