/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #ifndef PCL_RECOGNITION_OCCLUSION_REASONING_HPP_ #define PCL_RECOGNITION_OCCLUSION_REASONING_HPP_ #include #include /////////////////////////////////////////////////////////////////////////////////////////// template pcl::occlusion_reasoning::ZBuffering::ZBuffering (int resx, int resy, float f) : f_ (f), cx_ (resx), cy_ (resy), depth_ (nullptr) { } /////////////////////////////////////////////////////////////////////////////////////////// template pcl::occlusion_reasoning::ZBuffering::ZBuffering () : f_ (), cx_ (), cy_ (), depth_ (nullptr) { } /////////////////////////////////////////////////////////////////////////////////////////// template pcl::occlusion_reasoning::ZBuffering::~ZBuffering () { delete[] depth_; } /////////////////////////////////////////////////////////////////////////////////////////// template void pcl::occlusion_reasoning::ZBuffering::filter (typename pcl::PointCloud::ConstPtr & model, typename pcl::PointCloud::Ptr & filtered, float thres) { pcl::Indices indices_to_keep; filter(model, indices_to_keep, thres); pcl::copyPointCloud (*model, indices_to_keep, *filtered); } /////////////////////////////////////////////////////////////////////////////////////////// template void pcl::occlusion_reasoning::ZBuffering::filter (typename pcl::PointCloud::ConstPtr & model, pcl::Indices & indices_to_keep, float thres) { float cx, cy; cx = static_cast (cx_) / 2.f - 0.5f; cy = static_cast (cy_) / 2.f - 0.5f; indices_to_keep.resize (model->size ()); int keep = 0; for (std::size_t i = 0; i < model->size (); i++) { float x = (*model)[i].x; float y = (*model)[i].y; float z = (*model)[i].z; int u = static_cast (f_ * x / z + cx); int v = static_cast (f_ * y / z + cy); if (u >= cx_ || v >= cy_ || u < 0 || v < 0) continue; //Check if point depth (distance to camera) is greater than the (u,v) meaning that the point is not visible if ((z - thres) > depth_[u * cy_ + v] || !std::isfinite(depth_[u * cy_ + v])) continue; indices_to_keep[keep] = static_cast (i); keep++; } indices_to_keep.resize (keep); } /////////////////////////////////////////////////////////////////////////////////////////// template void pcl::occlusion_reasoning::ZBuffering::computeDepthMap (typename pcl::PointCloud::ConstPtr & scene, bool compute_focal, bool smooth, int wsize) { float cx, cy; cx = static_cast (cx_) / 2.f - 0.5f; cy = static_cast (cy_) / 2.f - 0.5f; //compute the focal length if (compute_focal) { float max_u, max_v, min_u, min_v; max_u = max_v = std::numeric_limits::max () * -1; min_u = min_v = std::numeric_limits::max (); for (const auto& point: *scene) { float b_x = point.x / point.z; if (b_x > max_u) max_u = b_x; if (b_x < min_u) min_u = b_x; float b_y = point.y / point.z; if (b_y > max_v) max_v = b_y; if (b_y < min_v) min_v = b_y; } float maxC = std::max (std::max (std::abs (max_u), std::abs (max_v)), std::max (std::abs (min_u), std::abs (min_v))); f_ = (cx) / maxC; } depth_ = new float[cx_ * cy_]; std::fill_n(depth_, cx * cy, std::numeric_limits::quiet_NaN()); for (const auto& point: *scene) { const float& x = point.x; const float& y = point.y; const float& z = point.z; const int u = static_cast (f_ * x / z + cx); const int v = static_cast (f_ * y / z + cy); if (u >= cx_ || v >= cy_ || u < 0 || v < 0) continue; if ((z < depth_[u * cy_ + v]) || (!std::isfinite(depth_[u * cy_ + v]))) depth_[u * cx_ + v] = z; } if (smooth) { //Dilate and smooth the depth map int ws = wsize; int ws2 = int (std::floor (static_cast (ws) / 2.f)); float * depth_smooth = new float[cx_ * cy_]; for (int i = 0; i < (cx_ * cy_); i++) depth_smooth[i] = std::numeric_limits::quiet_NaN (); for (int u = ws2; u < (cx_ - ws2); u++) { for (int v = ws2; v < (cy_ - ws2); v++) { float min = std::numeric_limits::max (); for (int j = (u - ws2); j <= (u + ws2); j++) { for (int i = (v - ws2); i <= (v + ws2); i++) { if (std::isfinite(depth_[j * cx_ + i]) && (depth_[j * cx_ + i] < min)) { min = depth_[j * cx_ + i]; } } } if (min < (std::numeric_limits::max () - 0.1)) { depth_smooth[u * cx_ + v] = min; } } } memcpy (depth_, depth_smooth, sizeof(float) * cx_ * cy_); delete[] depth_smooth; } } #endif // PCL_RECOGNITION_OCCLUSION_REASONING_HPP_