/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. */ #pragma once #include #include #include namespace pcl { /** * \brief A greedy hypothesis verification method * \author Aitor Aldoma */ template class PCL_EXPORTS GreedyVerification : public HypothesisVerification { using HypothesisVerification::mask_; using HypothesisVerification::scene_cloud_downsampled_; using HypothesisVerification::scene_downsampled_tree_; using HypothesisVerification::visible_models_; using HypothesisVerification::resolution_; using HypothesisVerification::inliers_threshold_; /* * \brief Recognition model using during the verification */ class RecognitionModel { public: std::vector explained_; typename pcl::PointCloud::Ptr cloud_; int bad_information_; int good_information_; int id_; float regularizer_; }; using RecognitionModelPtr = std::shared_ptr; /* * \brief Sorts recognition models based on the number of explained scene points and visible outliers */ struct sortModelsClass { bool operator() (const RecognitionModelPtr & n1, const RecognitionModelPtr & n2) { float val1 = static_cast(n1->good_information_) - static_cast(n1->bad_information_) * n1->regularizer_; float val2 = static_cast(n2->good_information_) - static_cast(n2->bad_information_) * n2->regularizer_; return val1 > val2; } } sortModelsOp; /* * \brief Recognition model indices to keep track of the sorted recognition hypotheses */ struct modelIndices { int index_; RecognitionModelPtr model_; }; /* * \brief Sorts model indices similar to sortModelsClass */ struct sortModelIndicesClass { bool operator() (const modelIndices & n1, const modelIndices & n2) { float val1 = static_cast(n1.model_->good_information_) - static_cast(n1.model_->bad_information_) * n1.model_->regularizer_; float val2 = static_cast(n2.model_->good_information_) - static_cast(n2.model_->bad_information_) * n2.model_->regularizer_; return val1 > val2; } } sortModelsIndicesOp; /** \brief Recognition model and indices */ std::vector indices_models_; /** \brief Recognition models (hypotheses to be verified) */ std::vector recognition_models_; /** \brief Recognition models that explain a scene points. */ std::vector> points_explained_by_rm_; /** \brief Weighting for outliers */ float regularizer_; /** \brief Initialize the data structures */ void initialize (); /** \brief Sorts the hypotheses for the greedy approach */ void sortModels () { indices_models_.clear (); for (std::size_t i = 0; i < recognition_models_.size (); i++) { modelIndices mi; mi.index_ = static_cast (i); mi.model_ = recognition_models_[i]; indices_models_.push_back (mi); } std::sort (indices_models_.begin (), indices_models_.end (), sortModelsIndicesOp); //sort also recognition models std::sort (recognition_models_.begin (), recognition_models_.end (), sortModelsOp); } /** \brief Updates conflicting recognition hypotheses when a hypothesis is accepted */ void updateGoodInformation (int i) { for (std::size_t k = 0; k < recognition_models_[i]->explained_.size (); k++) { //update good_information_ for all hypotheses that were explaining the same points as hypothesis i for (std::size_t kk = 0; kk < points_explained_by_rm_[recognition_models_[i]->explained_[k]].size (); kk++) { (points_explained_by_rm_[recognition_models_[i]->explained_[k]])[kk]->good_information_--; (points_explained_by_rm_[recognition_models_[i]->explained_[k]])[kk]->bad_information_++; } } } public: /** \brief Constructor * \param[in] reg Regularizer value **/ GreedyVerification (float reg = 1.5f) : HypothesisVerification () { regularizer_ = reg; } /** \brief Starts verification */ void verify () override; }; } #ifdef PCL_NO_PRECOMPILE #include #endif