/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #pragma once #include #include #include #include #include #include namespace pcl { /** Trainer for decision trees. */ template class PCL_EXPORTS DecisionTreeTrainer { public: /** Constructor. */ DecisionTreeTrainer(); /** Destructor. */ virtual ~DecisionTreeTrainer(); /** Sets the feature handler used to create and evaluate features. * * \param[in] feature_handler the feature handler */ inline void setFeatureHandler( pcl::FeatureHandler& feature_handler) { feature_handler_ = &feature_handler; } /** Sets the object for estimating the statistics for tree nodes. * * \param[in] stats_estimator the statistics estimator */ inline void setStatsEstimator( pcl::StatsEstimator& stats_estimator) { stats_estimator_ = &stats_estimator; } /** Sets the maximum depth of the learned tree. * * \param[in] max_tree_depth maximum depth of the learned tree */ inline void setMaxTreeDepth(const std::size_t max_tree_depth) { max_tree_depth_ = max_tree_depth; } /** Sets the number of features used to find optimal decision features. * * \param[in] num_of_features the number of features */ inline void setNumOfFeatures(const std::size_t num_of_features) { num_of_features_ = num_of_features; } /** Sets the number of thresholds tested for finding the optimal decision * threshold on the feature responses. * * \param[in] num_of_threshold the number of thresholds */ inline void setNumOfThresholds(const std::size_t num_of_threshold) { num_of_thresholds_ = num_of_threshold; } /** Sets the input data set used for training. * * \param[in] data_set the data set used for training */ inline void setTrainingDataSet(DataSet& data_set) { data_set_ = data_set; } /** Example indices that specify the data used for training. * * \param[in] examples the examples */ inline void setExamples(std::vector& examples) { examples_ = examples; } /** Sets the label data corresponding to the example data. * * \param[in] label_data the label data */ inline void setLabelData(std::vector& label_data) { label_data_ = label_data; } /** Sets the minimum number of examples to continue growing a tree. * * \param[in] n number of examples */ inline void setMinExamplesForSplit(std::size_t n) { min_examples_for_split_ = n; } /** Specify the thresholds to be used when evaluating features. * * \param[in] thres the threshold values */ void setThresholds(std::vector& thres) { thresholds_ = thres; } /** Specify the data provider. * * \param[in] dtdp the data provider that should implement getDatasetAndLabels() * function */ void setDecisionTreeDataProvider( typename pcl::DecisionTreeTrainerDataProvider::Ptr& dtdp) { decision_tree_trainer_data_provider_ = dtdp; } /** Specify if the features are randomly generated at each split node. * * \param[in] b do it or not */ void setRandomFeaturesAtSplitNode(bool b) { random_features_at_split_node_ = b; } /** Trains a decision tree using the set training data and settings. * * \param[out] tree destination for the trained tree */ void train(DecisionTree& tree); protected: /** Trains a decision tree node from the specified features, label data, and * examples. * * \param[in] features the feature pool used for training * \param[in] examples the examples used for training * \param[in] label_data the label data corresponding to the examples * \param[in] max_depth the maximum depth of the remaining tree * \param[out] node the resulting node */ void trainDecisionTreeNode(std::vector& features, std::vector& examples, std::vector& label_data, std::size_t max_depth, NodeType& node); /** Creates uniformely distrebuted thresholds over the range of the supplied * values. * * \param[in] num_of_thresholds the number of thresholds to create * \param[in] values the values for estimating the expected value range * \param[out] thresholds the resulting thresholds */ static void createThresholdsUniform(const std::size_t num_of_thresholds, std::vector& values, std::vector& thresholds); private: /** Maximum depth of the learned tree. */ std::size_t max_tree_depth_; /** Number of features used to find optimal decision features. */ std::size_t num_of_features_; /** Number of thresholds. */ std::size_t num_of_thresholds_; /** FeatureHandler instance, responsible for creating and evaluating features. */ pcl::FeatureHandler* feature_handler_; /** StatsEstimator instance, responsible for gathering stats about a node. */ pcl::StatsEstimator* stats_estimator_; /** The training data set. */ DataSet data_set_; /** The label data. */ std::vector label_data_; /** The example data. */ std::vector examples_; /** Minimum number of examples to split a node. */ std::size_t min_examples_for_split_; /** Thresholds to be used instead of generating uniform distributed thresholds. */ std::vector thresholds_; /** The data provider which is called before training a specific tree, if pointer is * NULL, then data_set_ is used. */ typename pcl::DecisionTreeTrainerDataProvider::Ptr decision_tree_trainer_data_provider_; /** If true, random features are generated at each node, otherwise, at start of * training the tree */ bool random_features_at_split_node_; }; } // namespace pcl #include