/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * Author : Christian Potthast * Email : potthast@usc.edu * */ #pragma once #include #include #include namespace pcl { class PCL_EXPORTS DenseCrf { public: /** Constructor for DenseCrf class. */ DenseCrf(int N, int m); /** Deconstructor for DenseCrf class. */ ~DenseCrf(); /** Set the input data vector. * * The input data vector holds the measurements coordinates as ijk of the voxel grid. */ void setDataVector(const std::vector> data); /** The associated color of the data. */ void setColorVector(const std::vector> color); void setUnaryEnergy(const std::vector unary); void addPairwiseEnergy(const std::vector& feature, const int feature_dimension, const float w); /** Add a pairwise gaussian kernel. */ void addPairwiseGaussian(float sx, float sy, float sz, float w); /** Add a bilateral gaussian kernel. */ void addPairwiseBilateral( float sx, float sy, float sz, float sr, float sg, float sb, float w); void addPairwiseNormals( std::vector>& coord, std::vector>& normals, float sx, float sy, float sz, float snx, float sny, float snz, float w); void inference(int n_iterations, std::vector& result, float relax = 1.0f); void mapInference(int n_iterations, std::vector& result, float relax = 1.0f); void expAndNormalize(std::vector& out, const std::vector& in, float scale, float relax = 1.0f) const; void expAndNormalizeORI(float* out, const float* in, float scale = 1.0f, float relax = 1.0f); void map(int n_iterations, std::vector result, float relax = 1.0f); std::vector runInference(int n_iterations, float relax); void startInference(); void stepInference(float relax); void runInference(float relax); void getBarycentric(int idx, std::vector& bary); void getFeatures(int idx, std::vector& features); protected: /** Number of variables and labels */ int N_, M_; /** Data vector */ std::vector> data_; /** Color vector */ std::vector> color_; /** CRF unary potentials */ /** TODO: double might use to much memory */ std::vector unary_; std::vector current_; std::vector next_; std::vector tmp_; /** Pairwise potentials */ std::vector pairwise_potential_; /** Input types */ bool xyz_, rgb_, normal_; public: PCL_MAKE_ALIGNED_OPERATOR_NEW }; } // namespace pcl