/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2013-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of Willow Garage, Inc. nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * */ #ifndef PCL_TRAJKOVIC_KEYPOINT_3D_IMPL_H_ #define PCL_TRAJKOVIC_KEYPOINT_3D_IMPL_H_ #include namespace pcl { template bool TrajkovicKeypoint3D::initCompute () { if (!PCLBase::initCompute ()) return (false); keypoints_indices_.reset (new pcl::PointIndices); keypoints_indices_->indices.reserve (input_->size ()); if (indices_->size () != input_->size ()) { PCL_ERROR ("[pcl::%s::initCompute] %s doesn't support setting indices!\n", name_.c_str ()); return (false); } if ((window_size_%2) == 0) { PCL_ERROR ("[pcl::%s::initCompute] Window size must be odd!\n", name_.c_str ()); return (false); } if (window_size_ < 3) { PCL_ERROR ("[pcl::%s::initCompute] Window size must be >= 3x3!\n", name_.c_str ()); return (false); } half_window_size_ = window_size_ / 2; if (!normals_) { NormalsPtr normals (new Normals ()); pcl::IntegralImageNormalEstimation normal_estimation; normal_estimation.setNormalEstimationMethod (pcl::IntegralImageNormalEstimation::SIMPLE_3D_GRADIENT); normal_estimation.setInputCloud (input_); normal_estimation.setNormalSmoothingSize (5.0); normal_estimation.compute (*normals); normals_ = normals; } if (normals_->size () != input_->size ()) { PCL_ERROR ("[pcl::%s::initCompute] normals given, but the number of normals does not match the number of input points!\n", name_.c_str ()); return (false); } return (true); } template void TrajkovicKeypoint3D::detectKeypoints (PointCloudOut &output) { response_.reset (new pcl::PointCloud (input_->width, input_->height)); const Normals &normals = *normals_; const PointCloudIn &input = *input_; pcl::PointCloud& response = *response_; const int w = static_cast (input_->width) - half_window_size_; const int h = static_cast (input_->height) - half_window_size_; if (method_ == FOUR_CORNERS) { #if OPENMP_LEGACY_CONST_DATA_SHARING_RULE #pragma omp parallel for \ default(none) \ shared(input, normals, response) \ num_threads(threads_) #else #pragma omp parallel for \ default(none) \ shared(h, input, normals, response, w) \ num_threads(threads_) #endif for(int j = half_window_size_; j < h; ++j) { for(int i = half_window_size_; i < w; ++i) { if (!isFinite (input (i,j))) continue; const NormalT ¢er = normals (i,j); if (!isFinite (center)) continue; int count = 0; const NormalT &up = getNormalOrNull (i, j-half_window_size_, count); const NormalT &down = getNormalOrNull (i, j+half_window_size_, count); const NormalT &left = getNormalOrNull (i-half_window_size_, j, count); const NormalT &right = getNormalOrNull (i+half_window_size_, j, count); // Get rid of isolated points if (!count) continue; float sn1 = squaredNormalsDiff (up, center); float sn2 = squaredNormalsDiff (down, center); float r1 = sn1 + sn2; float r2 = squaredNormalsDiff (right, center) + squaredNormalsDiff (left, center); float d = std::min (r1, r2); if (d < first_threshold_) continue; sn1 = std::sqrt (sn1); sn2 = std::sqrt (sn2); float b1 = normalsDiff (right, up) * sn1; b1+= normalsDiff (left, down) * sn2; float b2 = normalsDiff (right, down) * sn2; b2+= normalsDiff (left, up) * sn1; float B = std::min (b1, b2); float A = r2 - r1 - 2*B; response (i,j) = ((B < 0) && ((B + A) > 0)) ? r1 - ((B*B)/A) : d; } } } else { #if OPENMP_LEGACY_CONST_DATA_SHARING_RULE #pragma omp parallel for \ default(none) \ shared(input, normals, response) \ num_threads(threads_) #else #pragma omp parallel for \ default(none) \ shared(h, input, normals, response, w) \ num_threads(threads_) #endif for(int j = half_window_size_; j < h; ++j) { for(int i = half_window_size_; i < w; ++i) { if (!isFinite (input (i,j))) continue; const NormalT ¢er = normals (i,j); if (!isFinite (center)) continue; int count = 0; const NormalT &up = getNormalOrNull (i, j-half_window_size_, count); const NormalT &down = getNormalOrNull (i, j+half_window_size_, count); const NormalT &left = getNormalOrNull (i-half_window_size_, j, count); const NormalT &right = getNormalOrNull (i+half_window_size_, j, count); const NormalT &upleft = getNormalOrNull (i-half_window_size_, j-half_window_size_, count); const NormalT &upright = getNormalOrNull (i+half_window_size_, j-half_window_size_, count); const NormalT &downleft = getNormalOrNull (i-half_window_size_, j+half_window_size_, count); const NormalT &downright = getNormalOrNull (i+half_window_size_, j+half_window_size_, count); // Get rid of isolated points if (!count) continue; std::vector r (4,0); r[0] = squaredNormalsDiff (up, center); r[0]+= squaredNormalsDiff (down, center); r[1] = squaredNormalsDiff (upright, center); r[1]+= squaredNormalsDiff (downleft, center); r[2] = squaredNormalsDiff (right, center); r[2]+= squaredNormalsDiff (left, center); r[3] = squaredNormalsDiff (downright, center); r[3]+= squaredNormalsDiff (upleft, center); float d = *(std::min_element (r.begin (), r.end ())); if (d < first_threshold_) continue; std::vector B (4,0); std::vector A (4,0); std::vector sumAB (4,0); B[0] = normalsDiff (upright, up) * normalsDiff (up, center); B[0]+= normalsDiff (downleft, down) * normalsDiff (down, center); B[1] = normalsDiff (right, upright) * normalsDiff (upright, center); B[1]+= normalsDiff (left, downleft) * normalsDiff (downleft, center); B[2] = normalsDiff (downright, right) * normalsDiff (downright, center); B[2]+= normalsDiff (upleft, left) * normalsDiff (upleft, center); B[3] = normalsDiff (down, downright) * normalsDiff (downright, center); B[3]+= normalsDiff (up, upleft) * normalsDiff (upleft, center); A[0] = r[1] - r[0] - B[0] - B[0]; A[1] = r[2] - r[1] - B[1] - B[1]; A[2] = r[3] - r[2] - B[2] - B[2]; A[3] = r[0] - r[3] - B[3] - B[3]; sumAB[0] = A[0] + B[0]; sumAB[1] = A[1] + B[1]; sumAB[2] = A[2] + B[2]; sumAB[3] = A[3] + B[3]; if ((*std::max_element (B.begin (), B.end ()) < 0) && (*std::min_element (sumAB.begin (), sumAB.end ()) > 0)) { std::vector D (4,0); D[0] = B[0] * B[0] / A[0]; D[1] = B[1] * B[1] / A[1]; D[2] = B[2] * B[2] / A[2]; D[3] = B[3] * B[3] / A[3]; response (i,j) = *(std::min (D.begin (), D.end ())); } else response (i,j) = d; } } } // Non maximas suppression pcl::Indices indices = *indices_; std::sort (indices.begin (), indices.end (), [this] (int p1, int p2) { return greaterCornernessAtIndices (p1, p2); }); output.clear (); output.reserve (input_->size ()); std::vector occupency_map (indices.size (), false); const int width (input_->width); const int height (input_->height); #if OPENMP_LEGACY_CONST_DATA_SHARING_RULE #pragma omp parallel for \ default(none) \ shared(indices, occupency_map, output) \ num_threads(threads_) #else #pragma omp parallel for \ default(none) \ shared(height, indices, occupency_map, output, width) \ num_threads(threads_) #endif for (int i = 0; i < static_cast(indices.size ()); ++i) { int idx = indices[static_cast(i)]; if (((*response_)[idx] < second_threshold_) || occupency_map[idx]) continue; PointOutT p; p.getVector3fMap () = (*input_)[idx].getVector3fMap (); p.intensity = response_->points [idx]; #pragma omp critical { output.push_back (p); keypoints_indices_->indices.push_back (idx); } const int x = idx % width; const int y = idx / width; const int u_end = std::min (width, x + half_window_size_); const int v_end = std::min (height, y + half_window_size_); for(int v = std::max (0, y - half_window_size_); v < v_end; ++v) for(int u = std::max (0, x - half_window_size_); u < u_end; ++u) occupency_map[v*width + u] = true; } output.height = 1; output.width = output.size(); // we don not change the denseness output.is_dense = true; } } // namespace pcl #define PCL_INSTANTIATE_TrajkovicKeypoint3D(T,U,N) template class PCL_EXPORTS pcl::TrajkovicKeypoint3D; #endif