/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #ifndef PCL_FEATURES_IMPL_CVFH_H_ #define PCL_FEATURES_IMPL_CVFH_H_ #include #include #include ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::CVFHEstimation::compute (PointCloudOut &output) { if (!Feature::initCompute ()) { output.width = output.height = 0; output.clear (); return; } // Resize the output dataset // Important! We should only allocate precisely how many elements we will need, otherwise // we risk at pre-allocating too much memory which could lead to bad_alloc // (see http://dev.pointclouds.org/issues/657) output.width = output.height = 1; output.resize (1); // Perform the actual feature computation computeFeature (output); Feature::deinitCompute (); } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::CVFHEstimation::extractEuclideanClustersSmooth ( const pcl::PointCloud &cloud, const pcl::PointCloud &normals, float tolerance, const pcl::search::Search::Ptr &tree, std::vector &clusters, double eps_angle, unsigned int min_pts_per_cluster, unsigned int max_pts_per_cluster) { if (tree->getInputCloud ()->size () != cloud.size ()) { PCL_ERROR("[pcl::extractEuclideanClusters] Tree built for a different point cloud " "dataset (%zu) than the input cloud (%zu)!\n", static_cast(tree->getInputCloud()->size()), static_cast(cloud.size())); return; } if (cloud.size () != normals.size ()) { PCL_ERROR("[pcl::extractEuclideanClusters] Number of points in the input point " "cloud (%zu) different than normals (%zu)!\n", static_cast(cloud.size()), static_cast(normals.size())); return; } // Create a bool vector of processed point indices, and initialize it to false std::vector processed (cloud.size (), false); pcl::Indices nn_indices; std::vector nn_distances; // Process all points in the indices vector for (std::size_t i = 0; i < cloud.size (); ++i) { if (processed[i]) continue; processed[i] = true; pcl::PointIndices r; r.header = cloud.header; auto& seed_queue = r.indices; seed_queue.push_back (i); // loop has an emplace_back, making it difficult to use modern loops for (std::size_t idx = 0; idx != seed_queue.size (); ++idx) { // Search for seed_queue[index] if (!tree->radiusSearch (seed_queue[idx], tolerance, nn_indices, nn_distances)) { continue; } // skip index 0, since nn_indices[0] == idx, worth it? for (std::size_t j = 1; j < nn_indices.size (); ++j) { if (processed[nn_indices[j]]) // Has this point been processed before ? continue; //processed[nn_indices[j]] = true; // [-1;1] const double dot_p = normals[seed_queue[idx]].getNormalVector3fMap().dot( normals[nn_indices[j]].getNormalVector3fMap()); if (std::acos (dot_p) < eps_angle) { processed[nn_indices[j]] = true; seed_queue.emplace_back (nn_indices[j]); } } } // If this queue is satisfactory, add to the clusters if (seed_queue.size () >= min_pts_per_cluster && seed_queue.size () <= max_pts_per_cluster) { std::sort (r.indices.begin (), r.indices.end ()); r.indices.erase (std::unique (r.indices.begin (), r.indices.end ()), r.indices.end ()); // Might be better to work directly in the cluster somehow clusters.emplace_back (std::move(r)); // Trying to avoid a copy by moving } } } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::CVFHEstimation::filterNormalsWithHighCurvature ( const pcl::PointCloud & cloud, pcl::Indices &indices_to_use, pcl::Indices &indices_out, pcl::Indices &indices_in, float threshold) { indices_out.resize (cloud.size ()); indices_in.resize (cloud.size ()); std::size_t in, out; in = out = 0; for (const auto &index : indices_to_use) { if (cloud[index].curvature > threshold) { indices_out[out] = index; out++; } else { indices_in[in] = index; in++; } } indices_out.resize (out); indices_in.resize (in); } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::CVFHEstimation::computeFeature (PointCloudOut &output) { // Check if input was set if (!normals_) { PCL_ERROR ("[pcl::%s::computeFeature] No input dataset containing normals was given!\n", getClassName ().c_str ()); output.width = output.height = 0; output.clear (); return; } if (normals_->size () != surface_->size ()) { PCL_ERROR ("[pcl::%s::computeFeature] The number of points in the input dataset differs from the number of points in the dataset containing the normals!\n", getClassName ().c_str ()); output.width = output.height = 0; output.clear (); return; } centroids_dominant_orientations_.clear (); // ---[ Step 0: remove normals with high curvature pcl::Indices indices_out; pcl::Indices indices_in; filterNormalsWithHighCurvature (*normals_, *indices_, indices_out, indices_in, curv_threshold_); pcl::PointCloud::Ptr normals_filtered_cloud (new pcl::PointCloud ()); normals_filtered_cloud->width = indices_in.size (); normals_filtered_cloud->height = 1; normals_filtered_cloud->points.resize (normals_filtered_cloud->width); for (std::size_t i = 0; i < indices_in.size (); ++i) { (*normals_filtered_cloud)[i].x = (*surface_)[indices_in[i]].x; (*normals_filtered_cloud)[i].y = (*surface_)[indices_in[i]].y; (*normals_filtered_cloud)[i].z = (*surface_)[indices_in[i]].z; } std::vector clusters; if(normals_filtered_cloud->size() >= min_points_) { //recompute normals and use them for clustering KdTreePtr normals_tree_filtered (new pcl::search::KdTree (false)); normals_tree_filtered->setInputCloud (normals_filtered_cloud); pcl::NormalEstimation n3d; n3d.setRadiusSearch (radius_normals_); n3d.setSearchMethod (normals_tree_filtered); n3d.setInputCloud (normals_filtered_cloud); n3d.compute (*normals_filtered_cloud); KdTreePtr normals_tree (new pcl::search::KdTree (false)); normals_tree->setInputCloud (normals_filtered_cloud); extractEuclideanClustersSmooth (*normals_filtered_cloud, *normals_filtered_cloud, cluster_tolerance_, normals_tree, clusters, eps_angle_threshold_, static_cast (min_points_)); } VFHEstimator vfh; vfh.setInputCloud (surface_); vfh.setInputNormals (normals_); vfh.setIndices(indices_); vfh.setSearchMethod (this->tree_); vfh.setUseGivenNormal (true); vfh.setUseGivenCentroid (true); vfh.setNormalizeBins (normalize_bins_); vfh.setNormalizeDistance (true); vfh.setFillSizeComponent (true); output.height = 1; // ---[ Step 1b : check if any dominant cluster was found if (!clusters.empty ()) { // ---[ Step 1b.1 : If yes, compute CVFH using the cluster information for (const auto &cluster : clusters) //for each cluster { Eigen::Vector4f avg_normal = Eigen::Vector4f::Zero (); Eigen::Vector4f avg_centroid = Eigen::Vector4f::Zero (); for (const auto &index : cluster.indices) { avg_normal += (*normals_filtered_cloud)[index].getNormalVector4fMap (); avg_centroid += (*normals_filtered_cloud)[index].getVector4fMap (); } avg_normal /= static_cast (cluster.indices.size ()); avg_centroid /= static_cast (cluster.indices.size ()); Eigen::Vector4f centroid_test; pcl::compute3DCentroid (*normals_filtered_cloud, centroid_test); avg_normal.normalize (); Eigen::Vector3f avg_norm (avg_normal[0], avg_normal[1], avg_normal[2]); Eigen::Vector3f avg_dominant_centroid (avg_centroid[0], avg_centroid[1], avg_centroid[2]); //append normal and centroid for the clusters dominant_normals_.push_back (avg_norm); centroids_dominant_orientations_.push_back (avg_dominant_centroid); } //compute modified VFH for all dominant clusters and add them to the list! output.resize (dominant_normals_.size ()); output.width = dominant_normals_.size (); for (std::size_t i = 0; i < dominant_normals_.size (); ++i) { //configure VFH computation for CVFH vfh.setNormalToUse (dominant_normals_[i]); vfh.setCentroidToUse (centroids_dominant_orientations_[i]); pcl::PointCloud vfh_signature; vfh.compute (vfh_signature); output[i] = vfh_signature[0]; } } else { // ---[ Step 1b.1 : If no, compute CVFH using all the object points Eigen::Vector4f avg_centroid; pcl::compute3DCentroid (*surface_, avg_centroid); Eigen::Vector3f cloud_centroid (avg_centroid[0], avg_centroid[1], avg_centroid[2]); centroids_dominant_orientations_.push_back (cloud_centroid); //configure VFH computation for CVFH using all object points vfh.setCentroidToUse (cloud_centroid); vfh.setUseGivenNormal (false); pcl::PointCloud vfh_signature; vfh.compute (vfh_signature); output.resize (1); output.width = 1; output[0] = vfh_signature[0]; } } #define PCL_INSTANTIATE_CVFHEstimation(T,NT,OutT) template class PCL_EXPORTS pcl::CVFHEstimation; #endif // PCL_FEATURES_IMPL_VFH_H_