/* * Software License Agreement (BSD License) * * Point Cloud Library (PCL) - www.pointclouds.org * Copyright (c) 2010-2011, Willow Garage, Inc. * Copyright (c) 2012-, Open Perception, Inc. * * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #pragma once #include #include // for pcl::isFinite #include ////////////////////////////////////////////////////////////////////////////////////////////// template bool pcl::BoundaryEstimation::isBoundaryPoint ( const pcl::PointCloud &cloud, int q_idx, const pcl::Indices &indices, const Eigen::Vector4f &u, const Eigen::Vector4f &v, const float angle_threshold) { return (isBoundaryPoint (cloud, cloud[q_idx], indices, u, v, angle_threshold)); } ////////////////////////////////////////////////////////////////////////////////////////////// template bool pcl::BoundaryEstimation::isBoundaryPoint ( const pcl::PointCloud &cloud, const PointInT &q_point, const pcl::Indices &indices, const Eigen::Vector4f &u, const Eigen::Vector4f &v, const float angle_threshold) { if (indices.size () < 3) return (false); if (!std::isfinite (q_point.x) || !std::isfinite (q_point.y) || !std::isfinite (q_point.z)) return (false); // Compute the angles between each neighboring point and the query point itself std::vector angles (indices.size ()); float max_dif = FLT_MIN, dif; int cp = 0; for (const auto &index : indices) { if (!std::isfinite (cloud[index].x) || !std::isfinite (cloud[index].y) || !std::isfinite (cloud[index].z)) continue; Eigen::Vector4f delta = cloud[index].getVector4fMap () - q_point.getVector4fMap (); if (delta == Eigen::Vector4f::Zero()) continue; angles[cp++] = std::atan2 (v.dot (delta), u.dot (delta)); // the angles are fine between -PI and PI too } if (cp == 0) return (false); angles.resize (cp); std::sort (angles.begin (), angles.end ()); // Compute the maximal angle difference between two consecutive angles for (std::size_t i = 0; i < angles.size () - 1; ++i) { dif = angles[i + 1] - angles[i]; if (max_dif < dif) max_dif = dif; } // Get the angle difference between the last and the first dif = 2 * static_cast (M_PI) - angles[angles.size () - 1] + angles[0]; if (max_dif < dif) max_dif = dif; // Check results return (max_dif > angle_threshold); } ////////////////////////////////////////////////////////////////////////////////////////////// template void pcl::BoundaryEstimation::computeFeature (PointCloudOut &output) { // Allocate enough space to hold the results // \note This resize is irrelevant for a radiusSearch (). pcl::Indices nn_indices (k_); std::vector nn_dists (k_); Eigen::Vector4f u = Eigen::Vector4f::Zero (), v = Eigen::Vector4f::Zero (); output.is_dense = true; // Save a few cycles by not checking every point for NaN/Inf values if the cloud is set to dense if (input_->is_dense) { // Iterating over the entire index vector for (std::size_t idx = 0; idx < indices_->size (); ++idx) { if (this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0) { output[idx].boundary_point = std::numeric_limits::quiet_NaN (); output.is_dense = false; continue; } // Obtain a coordinate system on the least-squares plane //v = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().unitOrthogonal (); //u = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().cross3 (v); getCoordinateSystemOnPlane ((*normals_)[(*indices_)[idx]], u, v); // Estimate whether the point is lying on a boundary surface or not output[idx].boundary_point = isBoundaryPoint (*surface_, (*input_)[(*indices_)[idx]], nn_indices, u, v, angle_threshold_); } } else { // Iterating over the entire index vector for (std::size_t idx = 0; idx < indices_->size (); ++idx) { if (!isFinite ((*input_)[(*indices_)[idx]]) || this->searchForNeighbors ((*indices_)[idx], search_parameter_, nn_indices, nn_dists) == 0) { output[idx].boundary_point = std::numeric_limits::quiet_NaN (); output.is_dense = false; continue; } // Obtain a coordinate system on the least-squares plane //v = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().unitOrthogonal (); //u = (*normals_)[(*indices_)[idx]].getNormalVector4fMap ().cross3 (v); getCoordinateSystemOnPlane ((*normals_)[(*indices_)[idx]], u, v); // Estimate whether the point is lying on a boundary surface or not output[idx].boundary_point = isBoundaryPoint (*surface_, (*input_)[(*indices_)[idx]], nn_indices, u, v, angle_threshold_); } } } #define PCL_INSTANTIATE_BoundaryEstimation(PointInT,PointNT,PointOutT) template class PCL_EXPORTS pcl::BoundaryEstimation;