/* * Software License Agreement (BSD License) * * Copyright (c) 2010, Willow Garage, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * Neither the name of the copyright holder(s) nor the names of its * contributors may be used to endorse or promote products derived * from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * * $Id$ * */ #pragma once #include #include #include /** * \file pcl/common/intersections.h * Define line with line intersection functions * \ingroup common */ /*@{*/ namespace pcl { /** \brief Get the intersection of a two 3D lines in space as a 3D point * \param[in] line_a the coefficients of the first line (point, direction) * \param[in] line_b the coefficients of the second line (point, direction) * \param[out] point holder for the computed 3D point * \param[in] sqr_eps maximum allowable squared distance to the true solution * \ingroup common */ PCL_EXPORTS inline bool lineWithLineIntersection (const Eigen::VectorXf &line_a, const Eigen::VectorXf &line_b, Eigen::Vector4f &point, double sqr_eps = 1e-4); /** \brief Get the intersection of a two 3D lines in space as a 3D point * \param[in] line_a the coefficients of the first line (point, direction) * \param[in] line_b the coefficients of the second line (point, direction) * \param[out] point holder for the computed 3D point * \param[in] sqr_eps maximum allowable squared distance to the true solution * \ingroup common */ PCL_EXPORTS inline bool lineWithLineIntersection (const pcl::ModelCoefficients &line_a, const pcl::ModelCoefficients &line_b, Eigen::Vector4f &point, double sqr_eps = 1e-4); /** \brief Determine the line of intersection of two non-parallel planes using lagrange multipliers * \note Described in: "Intersection of Two Planes, John Krumm, Microsoft Research, Redmond, WA, USA" * \param[in] plane_a coefficients of plane A and plane B in the form ax + by + cz + d = 0 * \param[in] plane_b coefficients of line where line.tail<3>() = direction vector and * line.head<3>() the point on the line clossest to (0, 0, 0) * \param[out] line the intersected line to be filled * \param[in] angular_tolerance tolerance in radians * \return true if succeeded/planes aren't parallel */ PCL_EXPORTS template bool planeWithPlaneIntersection (const Eigen::Matrix &plane_a, const Eigen::Matrix &plane_b, Eigen::Matrix &line, double angular_tolerance = 0.1); PCL_EXPORTS inline bool planeWithPlaneIntersection (const Eigen::Vector4f &plane_a, const Eigen::Vector4f &plane_b, Eigen::VectorXf &line, double angular_tolerance = 0.1) { return (planeWithPlaneIntersection (plane_a, plane_b, line, angular_tolerance)); } PCL_EXPORTS inline bool planeWithPlaneIntersection (const Eigen::Vector4d &plane_a, const Eigen::Vector4d &plane_b, Eigen::VectorXd &line, double angular_tolerance = 0.1) { return (planeWithPlaneIntersection (plane_a, plane_b, line, angular_tolerance)); } /** \brief Determine the point of intersection of three non-parallel planes by solving the equations. * \note If using nearly parallel planes you can lower the determinant_tolerance value. This can * lead to inconsistent results. * If the three planes intersects in a line the point will be anywhere on the line. * \param[in] plane_a are the coefficients of the first plane in the form ax + by + cz + d = 0 * \param[in] plane_b are the coefficients of the second plane * \param[in] plane_c are the coefficients of the third plane * \param[in] determinant_tolerance is a limit to determine whether planes are parallel or not * \param[out] intersection_point the three coordinates x, y, z of the intersection point * \return true if succeeded/planes aren't parallel */ PCL_EXPORTS template bool threePlanesIntersection (const Eigen::Matrix &plane_a, const Eigen::Matrix &plane_b, const Eigen::Matrix &plane_c, Eigen::Matrix &intersection_point, double determinant_tolerance = 1e-6); PCL_EXPORTS inline bool threePlanesIntersection (const Eigen::Vector4f &plane_a, const Eigen::Vector4f &plane_b, const Eigen::Vector4f &plane_c, Eigen::Vector3f &intersection_point, double determinant_tolerance = 1e-6) { return (threePlanesIntersection (plane_a, plane_b, plane_c, intersection_point, determinant_tolerance)); } PCL_EXPORTS inline bool threePlanesIntersection (const Eigen::Vector4d &plane_a, const Eigen::Vector4d &plane_b, const Eigen::Vector4d &plane_c, Eigen::Vector3d &intersection_point, double determinant_tolerance = 1e-6) { return (threePlanesIntersection (plane_a, plane_b, plane_c, intersection_point, determinant_tolerance)); } } /*@}*/ #include